

République du Cameroun

Paix - Travail - Patrie

Ministère de l'Habitat et du Développement Urbain

ETUDE

RELATIVE A LA PRODUCTION ET A LA DISPONIBILITE DES MATERIAUX DE CONSTRUCTION AU CAMEROUN

Rapport phase I: In ventaire des matières premières et des produits disponibles

PROJET DE DEVELOPEMENT

URBAIN ET DE L'APPROVIONNEMENT

EAU (PDUE)

Acronymes

Acronymes

ALUCAM:	Aluminum du Cameroun		
BRIC:	Bricks and Roofing Industry of Cameroon		
CEMAC	Communauté Économique et Monétaire de l'Afrique Centrale		
CFD	Caisse Française de Développement		
CIMENCAM	:Cimenterie du Cameroun		
CMC	Complexe Métallurgique du Cameroun		
Cx/y:	Classe x/y		
ENSP:	École Nationale Supérieure Polytechnique de Yaoundé		
INJS	Institut National de la Jeunesse et de Sport		
MINUH	Ministère de l'Urbanisme et de l'Habitât		
MIPROMALO	Mission de Promotion des Matériaux Locaux		
Mx/y	Mortier de classe x/y		
ONUDI	Organisation des Nations Unies pour le Développement Industriel		
SCDM	Sociétés Camerounaise de Métallurgie		
SOCATRAL	Société Camerounaise de Transformation de l'Aluminium		
SOFAMAC	Société de Fabrication des Matériaux de Construction		
SOLADO	Société de Laminage de Douala		
TAC	Tôles et Aciers du Cameroun		
TMC:	Transformation Métallurgiques du Cameroun		
TPM	Transformation of Plastic and Metals		
W.C Water Closed			

Cadrage sémantique (définitions)

Matériaux¹: substances utilisées à la constitution des objets (bétons, métaux...). C'est également un terme générique employé au sens de la matière, substance,

produits¹. Ce terme est aussi utilisé pour désigner toute matière utilisée pour réaliser un objet au sens large du terme.

Granulats¹: fragment de roche de dimension inferieure à 125mm, destiné à entrer dans la composition des matériaux utilisés pour la fabrication des ouvrages de génie civil.

Agrégats¹: terme d'origine anglo-saxon qui vient du mot: « aggregates » utilisé pour désigner les granulats

Matériaux locaux1: terme générique utilisé pour désigner les matériaux de construction appartenant à une région géographique donnée (qui peut être un pays,..).

Matériaux précaires¹: sont des matériaux qui n'offrent aucune garantie de durabilité, de stabilité et de résistance. Leur utilisation en construction est prohibée.

1: WIKIPEDIA

Table des matières

Rapport d'étude 2009

Sommaire	2
Bibliographie	
Liste des figures	4
Liste des tableaux	6
Liste des photos	6
Anneyes	6

Etude relative à production et à la disponibilité des matériaux de construction au Cameroun

Table des matières

. ● ● Rapport étude 2013

9	SOMMA		
		I RAPPELS	8
		exte	8
		ectifs de l'étude	8
		II PRÉSENTATION DU CAMEROUN	10
		sentation	11
		Population	11
		III HYPOTHÈSES ET MÉTHODOLOGIE.	13
	-	pothèses	14
		thodologie	14
		es Données	14
		IV INVENTAIRE DES MATIÈRES	
		MIERES POUR LA CONSTRUCTION.	18 19
		s granulatss graviers	19
	IV.1.11e	Les sables (Figures 2, 3 et 4)	23
	IV.1.2		23
	IV.1.4		23
	IV.1.5	Les Pouzzolanes (Figures 2,3 et 4)	23
	IV.1.6	Le bois (Figure 4)	23
		V INVENTAIRE DES PRODUITS	20
	PARTIE	DISPONIBLES	0.4
	V.1	AGRÉGATS	24 25
	V. 1 V.1.1	Etat des lieux	25 25
	V.1.1 V.1.2	Production d'agrégats et caractéristiques	26
	V.1.2 V.1. 3	Les Coûts des granulats	29
	V.1. 3 V.1.4	Insuffisances de la filière d'agrégats	30
	V.1.4 V.2	LES ARMATURES EN ACIER	30
	V.Z	POUR BÉTON	33
	V.2.1	Etat des lieux et disponibilités	33
	V.2.2	Caractéristiques des aciers	00
	V.Z.Z	pour armatures	34
	V.2.3	Coûts des barres d'aciers pour béton	
		par région (Figures 14 à 16)	35
	V.2.4	Faiblesses de la filière du fer à béton	37
	V.3	LE CIMENT	38
	V.3.1	Etat des lieux	38
	V.3.2	Production	38
	V.3.3	Caractéristiques du Ciment	38
	V.3.4	Les Coûts par Région (Figures 19 à 22)	38
	V.3.5	Insuffisances de la filière Ciment	39
	V.4	LE BOIS	41
	V.4.1	Etat des lieux	41
	V.4 .2	Caractéristiques	41
	V.4 .3	Les coûts du bois par Région	
		(Figures 23, 24)	42
	V.4.4	Autres destinations du bois	44
	V.4 .5	Les insuffisances de la filière bois	44
	V.5	LES PRODUITS A BASE DE	45
	VE 4	BÉTON DE CIMENT	45 45
	V.5.1	Les bétons et mortiers	45 45
	V.5.1.1 V.5.2	Classification des Bétons et Mortiers	45
	v.5.Z	Pratique des bétons et mortiers au Cameroun	46
	V.5.3		46 49
	v.5.3 V.5.3.1	Les agglomérés de ciment Etat des lieux	49 49
		Les parpaings	49 49
	۷.0.0.۷	Loo parpairigo	T-U

	Méthode de fabrication d'agglomérés	49
V.5.3.4	Classification des agglomérés	50
V.5.3.5	Caractéristiques des agglomérés	
	de ciment du Cameroun	5
V.5.3.6	Les coûts des agglomérés de ciment	
	(Figure 25)	52
V.5.3.7	Les insuffisances de la filière des	
	agglomérés de ciment	52
V.6	LES TUILES EN CIMENT	53
V.6.1	Historique (Zanfack H. 1999)	5
V.6.2	Etat des lieux des tuiles à base de ciment	56
V.6.3	Caractéristiques des tuiles	58
V.6.4	Les coûts des tuiles en béton	_
\/O.F	double Roman	59
V.6.5	Les insuffisances de la filière Tuiles	_
\	de ciment	59
V.7	LES PRODUITS DE TERRE	60
V.7.1	Etat des lieux	60
V.7.2	Les coûts de produits de terre	
V/7.0	crue ou cuite	
V.7.3	Les insuffisances des produits	C
1/7/	de terre	60
V.7.4	Les atouts des produits de terre AUTRES MATÉRIAUX POUR	6
V.8		0
V 0 4	COUVERTURESLes tôles en Aluminium	64
V.8.1 V.8.1.1	Etat des lieux et coûts	64 64
		_
	Matériaux naturels Etat des lieux	6
V.8.2.1 V.9	AUTRES MATÉRIAUX POUR	6
V.9	MAÇONNERIES	60
V.9.1	Etat des lieux	60
V.9.1 V.10	LES PORTES ET FENÊTRES	60
V.10 V.10.1	Etat des lieux	60
	E VI TRANSPORT DES MATERIAUX	O
I AIXIII	DE CONSTRUCTION	6
VI.1	Etat des lieux	68
VI.1	Tarification	68
VI.2	Choix du mode de tarification	69
	s insuffisances de la filière des transports	70
	E VII LES INSTALLATIONS SANITAIRES	7
	ats des lieux	72
	ternative	72
	VII LES PRODUITS COURANTS ET LEUF	
. ,	SUBSTITUTS	.U 74
PARTIF	EVIII CONCLUSIONS	78
	GRAPHIE	8
DIBLIC	GRAFIIIE	O
ANNE	(ES	8
_	DES FIGURES	
Figure 1	1: Evolution du taux d'urbanisation	
	du Cameroun (3ième RGPH 2011)	12
Figure 2	2: Eléments de formation des couvertures	
	au Cameroun (Bessoles B. 1980)	20
Figure 3	3: Formations sédimentaires et	

Tables des matières

● ● Rapport étude 2010

// L:	
métamorphiques du Cameroun	0.4
(Dumort J. C. 1968)	21
Figure 4: les Sols du Cameroun	22
(Dumort J. C. 1968) Figure 4.1 Coût moyen d 'une tonne de sable	22
dragué dans la zone d'évitage du PAD	26
Figure 5: Répartition des carrières des granulats	20
exploitées par région	28
Figure 6: fuseaux granulométriques des	20
granulats utilisés pour la fabrication	
des bétons (ENSP-LGM 2007)	29
Figure 7: Prix de vente moyen du gravier 5/15	23
hors transport	30
Figure 8: Prix de vente moyen du gravier	00
15/25 hors transport	31
Figure 9: Prix de vente moyen du gros sable	01
hors transport	31
Figure 10: Prix de vente moyen du sable fin	01
hors transport	31
Figure 11: Prix de vente moyen du gravier	01
(des artisans) hors transport	32
Figure 12: Prix de vente moyen du sable fin	02
(des artisans) hors transport	32
Figure 13: Evolution du rapport prix moyen	02
de vente hors transport des granulats	
du secteur formel à ceux de l'informel	
par région	32
Figure 14: Prix moyen de vente hors transport	-
d'une barre Ha12	36
Figure 15: Prix moyen de vente hors transport	
d'une barre Ha10	36
Figure 16: Prix moyen de vente hors transport	
d'une barre Ha8	36
Figure 17: Prix moyen de vente hors transport	
d'une barre Ha6	36
Figure 18: Prix moyen de vente hors transport	
d'un rouleau de fer d'attache	37
Figure 19: Prix moyen de vente hors transport	
d'un sac de ciment Cimencam	37
Figure 20: Prix moyen de vente hors transport	
d'un sac de ciment importé par région	40
Figure 21: Coût moyen de 50kg de ciment	
importé arrivé au Port Autonome	
de Douala	40
Figure 22: Rapport entre le prix de vente hors	
transport par Région du ciment importé	
et à son coût d'arrivé au Port Autonome	
de Douala	41
Figure 23: Prix moyen de vente hors transport	
du bois de coffrage par Région.	44
Figure 24: Prix moyen de vente hors transport	
du bois de charpente par Région.	44
Figure 25: Prix moyen de vente hors transport d'un	
parpaing de 20 par Région	52
Figure 26: Prix moven de vente hors transport	

de 1m2 de tuile en béton double Romand	
par Région Figure 27: Prix moyen de vente hors transport	59
d'un bloc de terre cuite Région.	59
Figure 28: Prix moyen de vente hors transport d'une tôle ondulée de 3m en Aluminium.	65
Figure 29: Principe de fonctionnement d'une	
toilette à chasse d'eau Manuelle	73
LISTE DES PHOTOS	
Photo 1: Sable fin	27
Photo 2: Sable de rivière	27
Photo 3: Graviers	28
Photo 4: Eviers et pot de toilette en béton	4-
de ciment	47
Photo 5: Pavés en mortier de ciment	47
Photo 6: hourdis en mortier de ciment et moule	
pour hourdis	52
Photo 7: Construction d'une maison témoin	
au camp SIC (lieu dit Cité Verte)	
à Yaoundé vers les années 1992.	54
Photo 8: Vue de la maison témoin du camp	
SIC (lieu dit Cité Verte) à Yaoundé	
en 2009 soit 17ans plus tard.	54
Photo 9: Une vue de l'annexe de la faculté	
des Sciences de Yaoundé I	54
Photo 10: Une vue de l'extension de l'Ecole	
Nationale Supérieure Polytechnique	
de Yaoundé âgée de 15 ans (en 2009).	55
Photo 11: Construction d'un gymnase de sport	
de combat à l'INJS de Yaoundé vers	
les années 1994	55
Photo 12: la Vue intérieur de ce gymnase	
en 2009 soit 15ans plus tard	55
Photo 13: Toiture en tuile flamande vibro-ciment	
âgée de moins de 2ans (problèmes de	
stabilité de la couleur et de l'humidité).	57
Photo 14: Une vue de l'intérieur de la toiture	
précédente en tuile flamande âgée	
de 2ans (problème d'humidité).	57
Photo 15: Couverture en tuile double roman	
âgée de plus de 5ans	57
Photo 16: Couverture en tuile béton double	
roman verte âgée de plus de 10ans.	58
Photo 17: Blocs de terre comprimée et	
stabilisée(1990)	60
Photo 18: Stock des blocs de terre comprimée	
(en 2009)	61
Photo 19: Stock de brique de terre cuite (en 2009)	6′
Photo 20: Tiges des bambous de chine	65
Photo 21: Toiture en paille	66

Table des matières

Rapport étude 2010

LISTE DES TABLEAUX	
Tableau 1: Répartition du climat, de la végétation et des sols[Web.Worldbank.org] Tableau 2: Inventaire des matériaux utilisés	11
pour la construction des bâtiments au Cameroun	17
pour la construction des bâtiments au Cameroun (fin)	18
d'exploitation des carrières pour granulats (MINIMIDT 2009) Tableau 5: Concessions d'exploitation des carrières pour cimenterie et marbre	19
(MINIMIDT 2009) Tableau 6: Désignation des matières premières,	20
leur localisation et leur utilisation Tableau 7: Caractéristiques physiques des	23
granulats (ENSP-LGM 2007) Tableau 8: Les possibilités d'utilisation des roches	29
naturelles Tableau 9: Caractéristiques du fer à béton	33
importés (Couasnet Y. 2007) Tableau 10: Poids au mètre linéaire des armatures en acier pour différents diamètres	35
(Couasnet Y. 2007) Tableau 11: Caractéristiques moyennes des fers à béton vendus au Cameroun	35
entre 1998 -2009 (Mamba et al 2007) Tableau 12: Caractéristiques moyennes des quelq produits Cimencam (ENSP LGM 2007) Tableau 13: Caractéristiques moyennes de	35 ues 38
quelques bois vendus au Cameroun (ENSP-LMS 2007)	42
de quelques bois vendus au Camero (ENSP-LMS 2007) Tableau 15: Caractéristiques de mise en œuvre de	43
quelques bois vendus au Cameroun (ENSP-LMS 2007)	43
de quelques bois vendus au Cameroi (ENSP-LMS 2007)	un 43
Tableau 17: Classification des bétons (Couasnet Y. 2007) Tableau 18: Classification des mortiers	45
(Couasnet Y. 2007) Tableau 19: Les types des bétons utilisés	46
au Cameroun	46
(ENSP-LMG 2007)	47

Tableau 21: Types des mortiers utilisés au Cameroun	48
moyennes des mortiers de ciment (ENSP-LGM 2007)	48
pour maçonneries (Couasnet Y. 2007) Tableau 24: Caractéristiques des parpaings	50
fabriqués au Cameroun (ENSP- LGM 2007, BRIC 2007)	51
(ENSP- LGM 2007, BRIC 2007). Tableau 26: Caractéristiques des tuiles en vibro-mortier de ciment(ENSP	51
-LGM 2007) Tableau 27: Caractéristiques des tuiles en béton	58
double roman en mortier de ciment (BRIC 2009)	59
Tableau 28:Caractéristiques moyennes des briques de terre cuite du Cameroun (ENSP-LGM 2007)	62
Tableau 29:Caractéristiques physiques moyennes des briques de terre cuite (ENSP -LGM 2007)	62
Tableau 30: Caractéristiques physiques et mécaniques moyennes de l'Aluminium	65
Tableau 31: Tarification moyenne du transport des matériaux de construction Tableau 32: Produits d'usage courant et leurs	69
substituts	76
ANNEXES	
A1: Liste des entreprises du secteur métallurgique (acier aluminium)	85
locaux de construction	86
hors transport par Région (Littoral, Centre et Sud)	87
Nord West et Ouest)	88
(Est, Adamaoua, Nord et Extrême Nord) A6 : Fiches d'enquêtes	89 90

Partie I

Rappels des termes de référence de l'étude

Partie I - Rappels des termes de référence de l'étude	
Contexte	
Objectifs de l'étude	

Rappels

I. ● ● Rappel des termes de références de l'étude

I.1 Contexte

Le gouvernement camerounais envisage, avec l'appui financier de la Banque Mondiale, de formuler sa politique de l'habitat, par l'élaboration d'un document de référence, pour la période 2009-2019.

L'étude objet des présents Termes de référence a été identifiée à l'issue d'un travail préliminaire de cadrage, qui a permis d'identifier, entre autres axes stratégiques, la facilitation des activités de construction d'habitat social, qui met en œuvre, en amont, la vulgarisation des matériaux locaux, et en aval, l'organisation de la production. L'objectif étant de parvenir à une réduction du coût de l'habitat et à l'amélioration de la qualité des logements. C'est dans ce cadre que se situe la présente étude.

I.2. Objectifs de l'étude

Parmi les mesures propres à réduire le coût de l'habitat et à améliorer la qualité des logements populaires, la disponibilité et le prix des matériaux jouent un rôle important pour l'habitat du plus grand nombre, souvent réalisé en autoconstruction ou en autopromotion avec des tâcherons. Traditionnellement les matériaux employés pour le gros œuvre en milieu urbain sont les parpaings pour les murs, la tôle pour la couverture et le bois pour les fermetures. Les

installations sanitaires sont en ciment et façonnées sur place le plus souvent. Cette technique rudimentaire repose principalement sur:

- la facilité d'acquisition des matériaux, de façon progressive;
- la facilité de transport, de stockage à l'air libre ou sous des abris sommaires;
- et la relative maîtrise de la mise en œuvre par les tâcherons.

Ces pratiques permettent certes aux catégories sociales à revenu limité de pourvoir à leur besoin primordial d'avoir « un toit », mais elles présentent cependant de graves inconvénients parmi lesquels deux sont souvent cités: le non respect de certaines prescriptions techniques relatives aux matériaux et à leur utilisation d'une part ; le recours à des produits importés pas toujours contrôlés d'où la qualité médiocre du bâti (instabilité, pas d'isolation thermique,...) d'autre part. Pour pallier à ces défauts et proposer des matériaux mieux adaptés et à moindre coût monétaire, des recherches ont été conduites sur les « matériaux locaux ». Elles ont abouti à l'homologation et à la normalisation de certains produits capables de remplacer les matériaux « modernes » utilisés traditionnellement et de manière artisanale. Cependant, malgré cette « maturité technique », ces matériaux ne sont que très peu utilisés par les constructeurs (publics et privés).

La circulaire du Premier Ministre enjoignant aux maîtres d'ouvrage du secteur public de recourir aux matériaux locaux pour la réalisation de leurs projets, vise essentiellement à corriger cette situation en favorisant l'emploi de ces matériaux et l'amélioration de la qualité des constructions.

L'étude poursuit trois objectifs:

- faire l'inventaire des produits disponibles;
- assurer une comparaison en termes économiques, qualitatifs et des conditions de mise en œuvre des matériaux traditionnels et locaux normalisés;
- faire des recommandations pour promouvoir l'utilisation des matériaux qui présentent le meilleur rapport qualité/prix.

Le présent RAPPORT DE LA PHASE I qui entre dans le cadre de ce travail a deux objectifs:

- faire l'inventaire des principaux produits utilisables pour la construction de l'habitat;
- 2 présenter leurs caractéristiques techniques et économiques.

Mais avant d'y arriver, il est nécessaire de faire une brève présentation du Cameroun.

Partie II

Présentation du Cameroun

Partie II - Présentation du Cameroun	
Présentation	15
La population	15

Présentation du Cameroun

II.1 • • Présentation

Le Cameroun est un pays de l'Afrique Centrale. Sa superficie(3^{ième} RGPH 2011) est de 475 442km², il se trouve entre le 2^{ème} et 13^{ème} degré latitude Nord, et le 8^{ème} et 16^{ème} degré longitude Est.

Son éco système très diversifié comporte quatre grandes zones, à savoir :

- la zone Sahélienne du Nord;
- la zone Soudano- guinéenne dans l'Adamaoua;
- la zone forestière au Sud;
- les Hauts plateaux de l'Ouest.

En partant du Sud vers le Nord; le climat, la végétation et les sols se répartissent comme c'est indiqué au Tableau 1:

Tableau 1: Répartition du climat, de la végétation et des sols (Web.Worldbank.org)

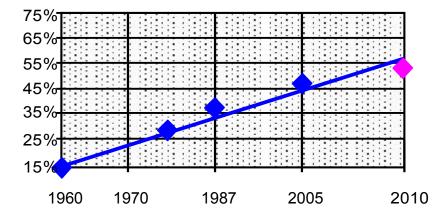
Latitude Nord	Climat	Végétation	Type de sol
2°-3°	Equatorial	Forêt Humide	
3°-5°	Sémi équatorial	Fôret caducifolié	Sols ferrallitiques
5°-7°	Tropical humide	Savane humide	
7°-10°	Tropical	Savane sèche	Sols ferrugineux
10°-15°	Tropical sec	Bois épineux	

II.2 • • La Population

Le recensement général de la population de 2005 révèle que le Cameroun (3^{ième} RGPH 2011) avait 17 463 839 habitants, ce qui à l'époque correspondait à une densité moyenne de 37,5 habitants au km². Si l'on tient compte du taux de croissance démographique de 2,6%, cette

population en 2009 serait de l'ordre de: 19 855 300 habitants, soit une densité moyenne de 41,8 habitants au km².

A cette croissance(3^{ième} RGPH 2011) démographique, il faut ajouter le taux d'urbanisation élevé qui était de 37.8% en 1987, puis de 45,8% en 2005 (Figure 1) et qui d'après les perspectives des chercheurs atteindra 52,0% à l'horizon 2010. Aujourd'hui, on estime que la


moitié de cette population vie dans les villes. Yaoundé et Douala à elles seules concentrent 40% environ de ces citadins.

L'inadéquation entre la croissance démographique et l'augmentation des revenus par habitant a comme conséquences:

 le manque des ressources financières et des moyens techniques pour satisfaire ou répondre à la demande en logement des populations par les collectivités locales. En milieu urbain comme en milieu rural, l'habitat précaire est devenu une solution pour une grande partie de la population;

 pour la catégorie des populations ayant des revenus (cas des cadres moyens et une partie des cadres supérieurs) le renchérissement des prix des matériaux de construction depuis une trentaine d'années leur a ôté la possibilité d'avoir leurs propres maisons.

Figure 1 - Évolution du taux d'urbanisation du Cameroun (3ième RGPH 2011)

La problématique du logement social est une préoccupation permanente de la quasi-totalité des pays en voie de développement en général et du Cameroun en particulier. Selon les statistiques (DSCE 2010-2020), la situation du Cameroun est très préoccupante du fait qu'en plus du déficit cumulé d'un million de logements sociaux auxquels il faut ajouter chaque année les 75000 demandes supplémentaires en logements. Pour satisfaire les besoins en habitat d'une partie des populations, il faudra, selon le document de Stratégie Nationale de Financement du Logement Social au Cameroun (SNFLSC 2010), construire chaque année environ 100 000 logements. Et si

les autorités décident que les 20% (20 000) des logements seront en matériaux de construction locaux, il faudra pour des logements modestes (ayant 130 m2 de toiture et 204 m2 des murs) consommer chaque année 34 millions des tuiles et 204 millions des blocs de terre (de 29x14x7). La production d'une telle quantité des tuiles et blocs de terre suppose :

- la disponibilité en abondance au sein du territoire des matières premières utilisées pour leur fabrication;
- et l'existence des industries capables de satisfaire cette demande en produits de bonne qualité.

Partie IIIHypothèses et méthodologie

Partie II - Hypothèses et méthodologie	
Hypothèses	15
Méthodologie	15

Hypothèses et méthodologie

III.1 • • Hypothèses

- Au Cameroun, les Chefs-Lieux de Régions sont des Centres de Distribution des matériaux de construction pour toutes les localités de leur ressort territorial.
- Ces chefs-lieux sont liés entre eux par un réseau des Routes Nationales (ou ferroviaire) à travers lesquels sont transportés toutes sortes des marchandises.

III.2 • • Méthodologie

Nous proposons dans les pages qui suivent de faire :

- un inventaire des Matières Premières disponibles et indispensables à la production des matériaux et produits locaux destinés à la construction;
- · un inventaire des produits finis disponibles;
- une présentation des caractéristiques techniques et des coûts de ces produits.

III.2.1 Les Données

Les données de ce rapport ont été obtenues de la façon suivante :

Pour ce qui concerne l'inventaire des matières premières, nous avons consulté les bases des données de l'IRGM, de la MIPROMALO, de LABOGENIE et de l'ENSP. Des descentes sur le terrain en vue de se faire une idée de l'existence des gisements des matériaux ont été réalisées.

En ce qui concerne l'inventaire des matières premières exploitées et des produits finis disponibles, on s'est rapproché des services du MINMIDT, du MINPMEESA. Plusieurs descentes sur le terrain ont été effectuées afin de compléter les données collectées dans ces institutions.

Nous avons divisé les acteurs intervenant dans la filière des matériaux de construction en quatre catégories :

- · les entreprises et artisans d'exploitation des matières premières et de fabrication des matériaux de construction;
- les importateurs des matériaux de construction:
- les vendeurs des matériaux de construction;
- les transporteurs des matériaux de construction.

Chaque catégorie d'acteur a été soumise à un certain nombre des questions (annexe A6) dont les objectifs visés étaient de connaître :

- 1 leur capacité de production;
- 2 leur prix de vente des matériaux ou produits afin d'avoir une idée sur les coûts;

3 la manière dont les produits sont acheminés vers les centres de distribution ou sur les sites des clients.

En ce qui concerne les caractéristiques techniques des différents produits, nous avons consulté les bases des données : du LABOGENIE, de la MIPROMALO et de l'ENSP. Des essais complémentaires afin de mesurer certaines caractéristiques non disponibles ont été faits dans les laboratoires de l'ENSP.

En fait, la construction d'une habitation exige l'utilisation des matériaux pour réaliser ses

structures et superstructures. La liste non exhaustive des matériaux utilisables est présentée dans les Tableaux 2 et 3. L'observation attentive de deux tableaux, montre que les matériaux couramment utilisés au Cameroun sont:

- les granulats (sable, gravier) et ciment pour la confection des bétons, des mortiers et des agglomérés de ciment;
- les sols argileux pour la fabrication des blocs de terre, des tuiles;
- le bois pour les coffrages, les charpentes, les portes et fenêtres;
- l'acier pour la fabrication du béton armé.

Tableau 2: Inventaire des matériaux utilisés pour la construction des bâtiments au Cameroun

	PRODUITS	Disponibilité Dans toutes	Coûts	Matériaux utilisés
OUVRAGES	- /	les Régions		
	Béton Armé	oui	élevé et plus	Ciment+sable+graviers+aciers
Fondations	Micro béton armé	oui	moyen	Sable+ciment
	Aggloméré de béton	oui	moyen	Sable+ciment
	Pierre naturelles	non	élevée	Sable+ciment+pierrres
	Béton Armé	oui	élevé et plus	Ciment+sable+graviers+aciers
Structures	Micro béton armé	oui	moyen	Sable+ciment+aciers
	Bois	non	moyen à élevé	bois
	Aciers	non	très élevé	aciers
	Métallique	non	très élevé	aciers, Aluminium
Charpente	Bois	oui	moyen à élévé	bois
	Bardage métallique+isolant	non	très élévé	aciers, Aluminium
Plafond	Contre plaqué	oui	moyen à élevé	bois
	Fibre de verre	non	très élevé	verre
	Fibre de bois	non	très élevé	bois
Isolants	Laine de roche	non	très élevé	roche
	Laine de verre	non	très élevé	verre
	Polystyrène	non	très élevé	Polystyrène
	Béton banché	oui	très élevé	Ciment+sable+graviers+aciers
	blocs de béton	oui	moyen	Sable+ciment+graviers
	Parpaings de ciment	oui	moyen	Sable+ciment
	Blocs de terre crue	oui	Faible	terre
Murs	Blocs de terre cuite	oui	Faible	terre
	Blocs de terre stabilisée	oui	Faible	terre+stabilisant
	Pisé	oui	Faible	terre
	Béton poreux	inexistant	très élevé	Ciment + poudre d'aluminium
	Béton de copeaux	non	moyen	copeaux +ciment
	Pierres naturelles	non	élevée	Ardoises, Lauzes
	Pierre s naturelles	non	élevée	pierres
	Tôles en aluminium	oui	moyen	aluminium
	Tuiles en vibro mortier	non	moyen	Sable+ciment
Couvertures	Double tuile Roman	non	moyen	Sable+ciment
Couvertures	Tuiles plate en béton			Sable+ciment
	Roseaux	non	moyen faible	
		non		roseaux
	Béton	oui	élevé et plus	Ciment+sable+graviers
	Natte de raphia	non	faible	le raphia
	Bardeau de bois	oui	faible	bois
	Chape de ciment	oui	élevé et plus	Sable+ciment
	Pavés de béton	oui	moyen	Ciment+sable+graviers
_ ^	Carreau en béton	oui	moyen	Ciment+sable+graviers
Revêtement	Carreaux céramiques	oui	élevé et plus	céramique
Sols	Gobettis	oui	moyen	Ciment+sable+graviers
	Bois	oui	élevé et plus	bois

Tableau 3: Inventaire des matériaux utilisés pour la construction des bâtiments au Cameroun (fin)

	PRODUITS	Disponibilité Dans toutes	Coûts
OUVRAGES		les Régions	
	WC céramique	oui	élevé et plus
	Evier ceramique	oui	élevé et plus
Sanitaires	Evier aluminium	oui	Faible
	Evier en béton	oui	Faible
	pot de WC en béton	oui	Faible
	Enduit en mortier de ciment	oui	élevé et plus
	peinture	oui	élevé
Revêtements	Carreaux de faience	oui	élevé et plus
murs	Carreaux en béton	oui	moyen
	bois	oui	élevée
	briquettes de terre cuite	oui	moyen
	Bois massif	oui	élevé et plus
Portes et	Portes isoplanes	oui	Faible
Fenêtres	Tôles d'aciers	oui	élevé et plus
	Tôles aluminium	oui	Faible
	verre	oui	très élevé
	Volets battant	oui	moyen
	persiennes	oui	moyen
	anti -vol en profilé métallique	oui	élevé et plus
	anti -vol en fer à béton	oui	élevé et plus
	Collectif	non	très élevé
Assainissement	individuel	oui	moyen

Partie IV **Inventaire des matières** premières pour la construction

Partie IV	-	Inventaire	des	matières	premières	pour	la	construction	

Les granulats	19
Les sables	23
Les sols latéritiques	23
Les sols argileux	23
Les pouzzolanes	23
Le bois	

Inventaire des matières premières pour la construction

Dans ce paragraphe nous examinons, la disponibilité des matières premières indispensables à la production de certains matérieux de construction (les granulats, les sols latéritiques, les sols argileux et le bois) qui se trouvent sur le territoire camerounais.

IV.1 • • Les granulats

lci nous admettrons que les granulats sont constitués par les sables et les graviers.

IV.1.1 les graviers

Si l'on observe attentivement les cartes géologiques du Cameroun (des Figures 2, 3 des pages 20 et 21) : on constate que les formations métamorphiques et plutoniques sont présentes sur la presque totalité du territoire (entre le 2^{ème} et

le 11^{ème} degré latitude Nord). En d'autres termes, cette zone est riche en roches massives qui peuvent être exploitées pour la fabrication des granulats concassés utilisés dans la confection des bétons.

Au cours de notre enquête, en s'intéressant à l'implantation des concessions officielles des carrières pour granulats à but commercial, nous avons constaté que dans les régions enclavées et dans les zones où il n'existe pas de concession permanente d'exploitation des carrières, il est également possible d'obtenir des granulats par des filières informelles constituées d'exploitants artisanaux. Au cours de notre enquête, nous avons dénombré 17 concessions permanentes officielles d'exploitation des carrières pour granulats qui confirme les informations données par le MINIMIDT (2009) des Tableaux 4 et 5.

Tableau 4: Concessions permanentes d'exploitation des carrières pour granulats (MINIMIDT 2009)

N°	Entreprises	Localisation de	Région	Production annuel	
		la carrière		en tonne	
1	Dragaga et TP	Mbankomo (Yaoundé)	Centre	600 000	
2	Razel SA	Nkometou	Centre	600 000	
3	Razel SA	Logbadjeck	Littoral	600 000	
4	Satom	Nkolyop(Sangmelima)	Sud	200 000	
5	Satom	Ekona	su westd	200 000	
6	Kectch	Mbankolo(Yaoundé)	Centre	200 000	
7	Kectch	Beinkok (Edéa)	Centre	200 000	
8	Kectch	Maroua	Extrême Nord	100 000	
9	Fokou	Ngaoundal	Adamaoua	100 000	
10	Rocaglia	Bidzar	Nord	100 000	
11	LCC	Nkolbisson	Centre	100 000	
12	BUNS	Santa	Nord West	30 000	
13	Carrière du littoral	Ombé	Sud West	100 000	
		TOTAL DE LA PRODUCTI	TOTAL DE LA PRODUCTION		

Tableau 5: Concessions d'exploitation des carrières pour cimenterie et marbre (MINIMIDT 2009)

Entreprises	Matériaux exploités	Localisation	Région	Production annuelle en tonne
CIMENCAM	Calcaire	Figuil	Extrême Nord	90 000
ROCAGLIA	Marbre	Bidzar	Nord	5 000
CIMENCAM	Argile	Figuil	Extrême Nord	275 000

Figure 2: Eléments de formation des couvertures au Cameroun (Bessoles B. 1980)

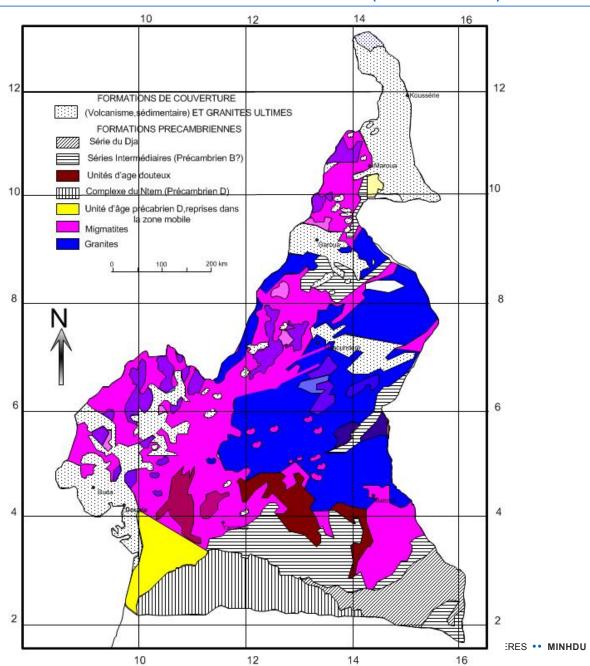


Figure 3: Formations sédimentaires et métamorphiques du Cameroun (Dumort J. C. 1968).

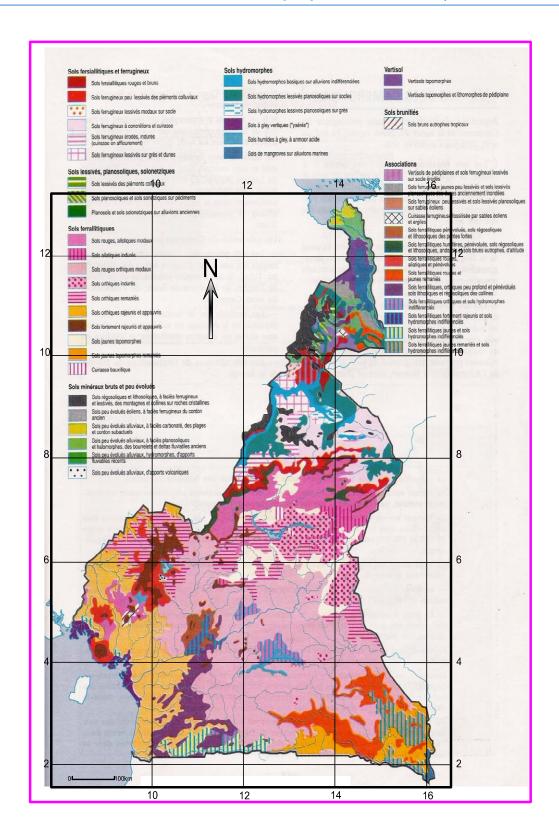
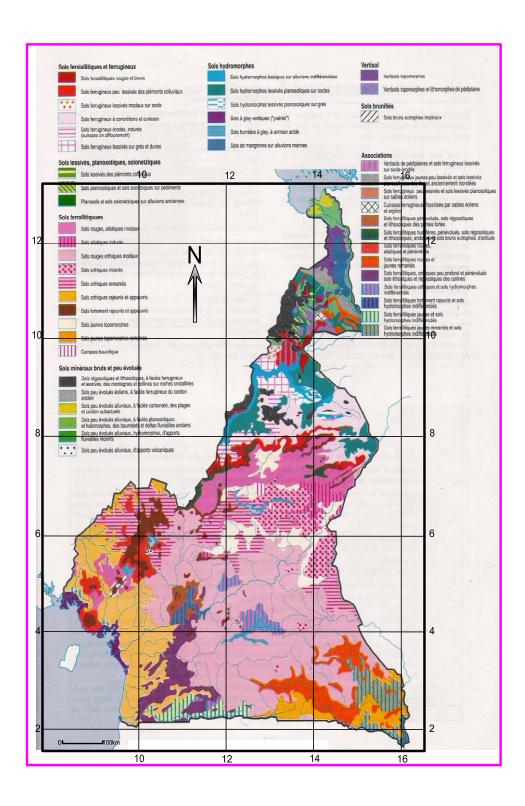



Figure 4: les Sols du Cameroun (Dumort J. C. 1968)

IV.1.2 Les sables (Figures 2, 3 et 4)

Les formations sableuses se trouvent partout au Cameroun (en particulier les sables alluvionnaires qu'on trouve en bordure de certains lacs, sur le lit des anciens lacs, en bordure et sur le lit de certains cours d'eau). Par contre, les zones très riches en sable se trouvent dans le littoral (entre le 7^{ième} et 10^{ième} degré longitude Est et entre le 4^{ième} et 5^{ième} degré latitude Nord) et dans l'extrême nord au-delà du 10^{ième} degré latitude Nord.

IV.1.3 Les sols latéritiques (Figure 4)

Les sols latéritiques (sols ferralitiques ou sols ferrugineux: Tableau 1) utilisés pour la fabrication des blocs de terre crue ou stabilisée se trouvent sur toute l'étendue du territoire.

IV.1.4 Les sols argileux (Figure 4)

Nous parlons ici des sols contenant plus de 15% de matières argileuses. Ce type de sols se rencontre également sur toute l'étendue du territoire. Mais, il existe des régions particulièrement riches en argiles : la zone de l'extrême nord au- delà du 10^{ième} degré latitude

Nord et la zone du sud West entre le 7^{ième} et 11^{ième} degré longitude Est, puis entre le 2^{ième} et 6^{ième} degré latitude Nord. Ces sols argileux peuvent servir à la fabrication des briques ou tuiles de terre cuite.

IV.1.5 Les Pouzzolanes (Figures 2,3 et 4)

Les pouzzolanes ne se trouvent que dans les régions volcaniques situées entre le 8^{ième} et 11^{ième} degré longitude Est, et entre le 4^{ième} et 7^{ième} degré latitude Nord.

IV.1.6 Le bois (Figure 4)

Le bois est exploité dans la zone forestière qui se trouve en dessous du 5 degré latitude Nord et entre le 11 degré et 16 degré longitude Est. En définitive à la lumière des résultats des Figures: 2, 3 et 4, nous proposons au Tableau 6; la liste des principales matières premières, leur localisation et leurs possibilité d'utilisation.

Tableau 6: Désignation des matières premières, leur localisation et leur utilisation

Désignation des matières premières	Région de	Utilisation
	Localisation	
Sols latéritiques	Toutes les régions	Blocs de terre crue ou stabilisée
Sols argileux	Toutes les régions	Produits de terre cuite, céramique
Sables	Toutes les régions	Mortier de ciment, micro béton
Roches(granites,gneiss, quarzites)	Toutes les régions	Agrégats pour béton
Bois	Centre, Sud, Est	Charpente bois
Pouzzolanes	Littoral,Sud,Ouest	Mortier de ciment, béton

Partie V Inventaire des produits disponibles

Partie V - Inventaire des produits disponibles Agrégats 25 Les armatures en acier pour béton 33 38 Le ciment 41 Le bois 45 Les produits à base de ciment 53 Les tuiles en ciment 60 Les produits de terre

Autres matériaux pour couvertures

Les portes et fenêtres

Autres matériaux pour maçonneries

64

66

66

Inventaire des produits disponibles

V.1 • • Agrégats

V.1.1 Etat des lieux

a) Les graviers

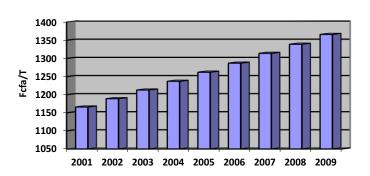
La production des graviers au Cameroun est partagée entre les industriels qui assurent 90% de la production des granulats, le secteur informel et l'autoproduction des grandes entreprises qui satisfont leurs propres besoins au cours de l'exécution des projets dont ils sont adjudicataires. Les carrières de production des granulats actuellement en exploitation approvisionnent essentiellement les grandes agglomérations des Régions. Pour les autres agglomérations l'approvisionnement requiert la livraison par camions devant parcourir des longues distances (souvent sur des routes en mauvais état) provoquant le renchérissement des coûts qui deviennent prohibitifs pour la majorité de la population.

Les producteurs industriels des granulats sont des entreprises bien structurées, ayant obtenues du gouvernement camerounais une ou plusieurs concessions officielles d'exploitation des carrières (cf. Tableau 4 et 5). La qualité des produits proposés par ces entreprises est conforme aux normes en vigueurs.

Avec moins de 10% de la production des graviers, le secteur informel est un producteur marginal. Il est constitué par une multitude

d'exploitants artisanaux qui utilisent le feu et des marteaux pour concasser la pierre afin de produire les granulats. Ils sont installés dans les villages, dans les zones enclavées et partout où les prix élevés des granulats les obligent à s'installer afin d'offrir des solutions alternatives aux consommateurs. A côté de ces artisans, s'est constituée une nouvelle catégorie de métiers spécialisés dans la fabrication des granulats à partir des matériaux de démolition (béton). Cette nouvelle catégorie d'artisans est généralement installée dans la périphérie de certains centres urbains. La qualité des granulats proposés par le secteur informel est approximative et dépend fortement de la nature des roches exploitées. Le recensement et l'identification de ces artisans sont rendus difficiles à cause du caractère informel de leurs activités.

b) Les sables


On distingue trois types de sable : le gros sable, le sable fin et le sable de carrière.

Le gros sable (ou sable grossier) est extrait du lit des cours d'eau par des artisans. Le sable fin est obtenu en creusant sur les berges des rivières ou des lagunes. Le sable de carrière, comme son nom l'indique, est le produit résiduel des carrières pour granulats. Sa qualité est approximative.

Dans la ville de Douala, des millions de m3 de sable dragués chaque année par le Port Autonome de Douala sont déversés sur les berges du Wouri. Il serait intéressant de les commercialiser (Mamba et al 2007). En effet, les résultats des travaux (Mamba et al 2007, Bakehe 2004) ont montré que le sable provenant de la zone d'évitage pouvait être utilisé pour la confection des bétons après six mois de stockage à l'air libre (période suffisante pour le lessivage des sels marins par l'eau des pluies). Sous la base des informations fournies par le Port Autonome de Douala (PAD) et LABOGNIE, ce sable de dragage a été utilisé en 2002, comme matériaux de construction dans le cadre d'un projet de construction des hangars de la Société Camerounaise PECTEN. En se référant à quelques statistiques donnés par le Département du Domaine Maritime du PAD, entre octobre 2000 et juillet 2004, 14 288 764 m3 des matériaux ont été dragués. Pendant cette même période, le coût d'une tonne de sable dragué dans la zone d'évitage du PAD, est passé de 1166Fcfa à 1237Fcfa soit une inflation de 2% l'an. En 2009 ce coût avait atteint la somme de 1366Fcfa la tonne, ce qui est très inférieur au prix de vente (4000Fcfa/T) hors transport du sable à Douala.

Dans une stratégie visant à l'amortissement des coûts liés aux opérations de dragage des matériaux au Port Autonome de Douala qui s'élèvent à 1 329 4000 Fcfa par an (Bakehe 2004), les autorités du PAD étudient en ce moment les opportunités de valorisation des ce matériau dans le secteur du Bâtiment et des Travaux Publics

Figure 4.1 : Coût moyen d'une tonne de sable dragué dans la zone d'évitage du PAD

■Sable dragué zone évitage

De façon générale au Cameroun, le sable est extrait du lit des rivières, puis transporté vers les dépôts ou chez les clients par camions; ce qui a pour effet renchérir leur prix de vente.

V.1.2 Production d'agrégats et caractéristiques

a) Les sables

Les sables qui se trouvent dans toutes les

régions du Cameroun sont exploités de façon artisanale.

Dans le commerce, on distingue le sable fin et le sable grossier. Les fuseaux granulométriques des différents sables sont résumés par la Figure 6. Leurs caractéristiques physiques et mécaniques sont données au Tableau 7. Les pénuries observées parfois pendant les saisons pluvieuses dans certaines villes comme Yaoundé, résultent tout simplement

de l'insuffisance des stocks et des conditions dans lesquelles les artisans extraient ce sable. Le

système de production actuel serait incapable de faire face à une augmentation de la demande en

Photo 1: Sable fin

Photo 2: Sable de rivière

b) les graviers

Les graviers sont exploités de façon formelle par des entreprises spécialisées (Cf. Tableau 4) possédant des concessions d'exploitation des carrières pour granulats. Leur répartition au niveau du territoire camerounais est très inégale. Certaines régions comme, l'Est et l'Ouest n'ont pas d'exploitant officiel des carrières pour granulats. Dans le commerce on distingue deux classes des granulats : le 5/15 et le 15/25.

Leurs caractéristiques physiques ou mécaniques moyennes sont résumées par le Tableau 7 et la Figure 6. La capacité de production des granulats est de l'ordre de 3,1millions de tonnes par an. Le système de production actuel serait également incapable de satisfaire une augmentation de la demande en granulats de 50% de la consommation actuelle.

Photo 3: Graviers

Figure 5: Répartition des carrières des granulats exploitées par région

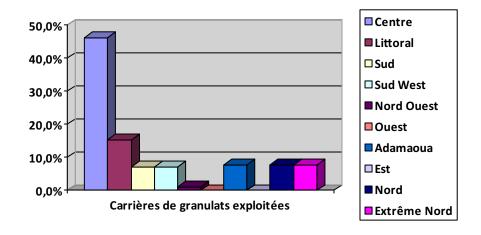
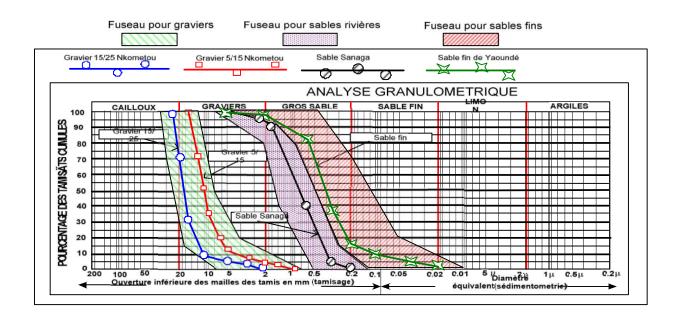



Tableau 7: Caractéristiques physiques des granulats (ENSP-LGM 2007)

Type de	Densité	Densité	Porosité	Conduc vité
granulats	apparente	spécifi que		thermique
gravier	1,4-1,75	2,5-2,65	<0,25%	3,5W/m°C
sables	1,5-1,75	2,6-2,65		3,5W/m°C

Figure 6: Fuseaux granulométriques des granulats utilisés pour la fabrication des bétons (ENSP-LGM 2007)

V.1.3 Les Coûts des granulats

A la lumière de nos enquêtes (Figures 7 à 12); les prix de vente des granulats hors transport varient énormément d'une région à une autre. Ils sont également fonction de la demande et du secteur (informel ou formel) qui les commercialise.

a) Secteur Formel (Figures 7 à 10)

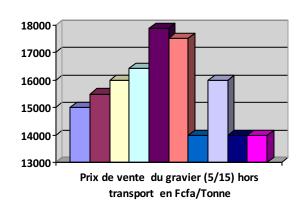
Nous constatons que : là où la demande

est forte, et malgré la disponibilité des matériaux, les prix des graviers sont relativement élevés et supérieurs à 15 000F par tonne (Douala, Yaoundé). Nous constatons qu'au- delà du 8^{ème} degré latitude Nord, les prix des graviers sont relativement bas, 14 000F par tonne (Adamaoua, Nord, Extrême Nord). La faiblesse du niveau des prix au-delà du 8^{ième} degré latitude Nord, résulte du fait que la filière des granulats est contrôlée par le secteur

informel. Les prix moyens de vente des sables hors transport qui sont élevés dans les régions du Centre, du Nord West et de l'Ouest résultent tout simplement de la persistance d'une très forte demande dans ces zones. Par contre le faible niveau des prix observé dans la région du Littoral s'expliquerait par le fait que l'offre en sable est supérieure à la demande.

b) Secteur informel (Figures 11,12)

Dans le secteur informel on ne commercialise que du gravier (on ne fait pas de distinction entre le gravier 5/15 ou le 15/25). Lorsqu'on observe les prix de vente hors transport des granulats exploités par le secteur informel, on se rend compte qu'ils sont plus bas que ceux du secteur formel et en plus ; le prix varie très peu d'une région à une autre. Le


rapport entre les prix de vente du secteur formel et ceux du secteur informel (Figure 13) est en moyenne de 1.5 pour les graviers et de 2 pour les sables.

V.1.4 Insuffisances de la filière d'agrégats

La filière agrégats souffre de :

- la répartition inégale des concessions des carrières pour graviers au niveau du territoire national et de l'insuffisance de l'offre qui renchérissent leur prix de vente;
- l'exploitation artisanale des sables (dont les faibles rendements réduisent l'offre et font augmenter les prix de vente);
- l'inorganisation de la filière transport des matériaux de construction.

Figure 7: Prix de vente moyen du gravier 5/15 hors transport

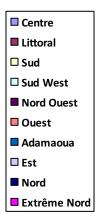


Figure 8: Prix de vente moyen du gravier 15/25 hors transport

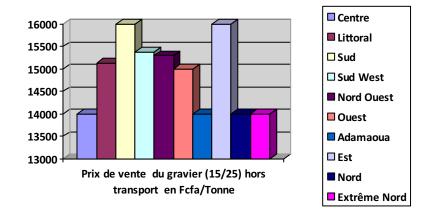


Figure 9: Prix de vente moyen du gros sable hors transport

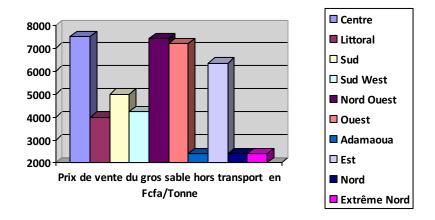


Figure 10: Prix de vente moyen du sable fin hors transport.

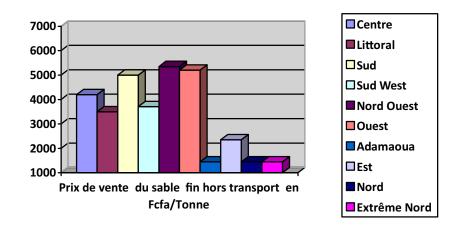


Figure 11: Prix de vente moyen du gravier (des artisans) hors transport.

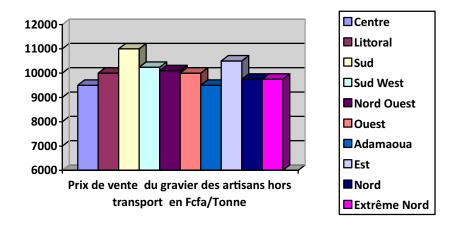


Figure 12: Prix de vente moyen du sable fin (des artisans) hors transport.

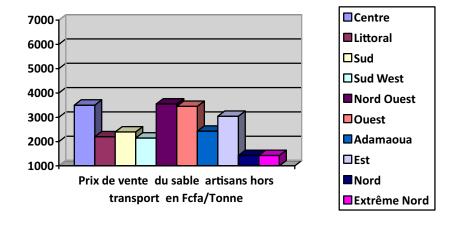
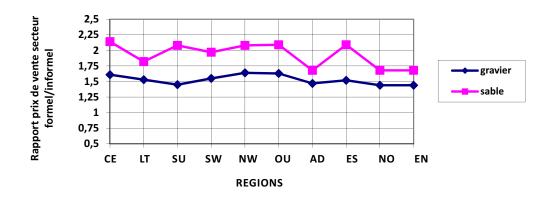



Figure 13: Evolution du rapport prix moyen de vente hors transport des granulats du secteur formel à ceux de l'informel par région

A titre indicatif nous vous donnons dans le Tableau 8 les possibilités d'utilisation des certaines roches naturelles.

Tableau 8: Les possibilités d'utilisation des roches naturelles

Désignation	Les utilisations
	Industries cimentières
	Industries céramiques
Roches calcaires	Industries du verre
	Industries ornementales
	Industrie des revêtements
	Industrie papétière
	Industries céramiques
Argiles	Industries cimentières
	Bâtiment,Travaux Publics
	Industries du cosmétique
	Industries céramiques
Sable	Industries du verre
	Bâtiment,Travaux Publics
	Bâtiment,Travaux Publics
Latérites	Industries des blocs de terre
	Industries des pigments
	Granulats
	Industries ornementales
	Industries céramiques
Roches massives	Bâtiment, Travaux Publics
	Industries de Revêtements

V.2 • • Les armatures en acier pour béton

V.2.1 Etat des lieux et disponibilités

Les fers à béton utilisés pour la construction au Cameroun sont importés à 95%. L'importation de ces aciers et leur distribution à l'intérieur du Cameroun sont contrôlées à 90% par trois

grandes entreprises de la place: FOKOU, AFRIQUE CONSTRUCTION et QUIFEROU. Ces aciers sont vendus sous la forme de barres de diamètre normalisé: 6, 8, 10, 12, 14, 16, 20, 25, 32, 40 et 50 mm. Les barres d'acier qu'on trouve le plus sur le marché sont ceux de diamètre 6, 8, 10 et 12 mm. Par contre ceux de diamètre supérieur sont rares.

Il existe au Cameroun deux unités de

fabrication du fer à béton : les « Aciéries du Cameroun (ancien SOLADO)» et SOFAMAC (appartenant au groupe Fokou). Ils importent le fer sous forme de bobine et procède au façonnage à froid : redressage, étirage, torsadage et découpe à des longueurs homologuées de 12 mètres. Ces entreprises procèdent également à la récupération des déchets en aciers. La capacité de production de l'ensemble de ces sociétés est de 30 000 tonnes. A côté de ces trois grands importateurs, des groupes comme SOCSUBA et SOREPCO importent également des aciers. Les aciers sont vendus dans les points de vente des différents distributeurs et transportés chez le client par camions.

La classification camerounaise des fers à béton s'inspire fortement de celle de l'Europe (et les aciers vendus sur le marché local doivent en principe être conformes à ces normes). Dans ce marché on trouve :

- les ronds lisses qui sont des aciers de petit diamètre (6 et 8mm) utilisés comme armatures transversales (cadres, étriers) pour poutres et poteaux;
- les aciers Hautes Adhérence (HA)
 présentant sur leurs surfaces un relief
 spécial ou protubérances qui
 augmentent l'adhérence béton –
 armature;
- les Treillis Soudés (TS): constitués d'aciers ronds lisses ou HA de petit

diamètre qui sont soudés en usines et qui servent à armer les grandes surfaces horizontales des dallages. Ils sont souvent vendus en rouleaux. Il existe des TS à maille carrées ou rectangulaires. Le sens porteur correspond à la direction des fils les moins espacés ou ayant un diamètre plus élevé (et le sens de répartition correspond à la direction des fils les plus espacés ou ayant un diamètre plus petit).

V.2.2 Caractéristiques des aciers pour armatures

Les aciers utilisés comme armatures dans les bétons se caractérisent par leur domaine d'élasticité « ou nuance » (domaine où la déformation est réversible et proportionnelle à la contrainte). Le Tableau 9 présente les caractéristiques des armatures en acier pour béton selon les normes NF A 35-015, 35-016 et 35-019. Le poids au mètre linéaire de ces armatures pour différents diamètres est donné par le Tableau 10.

Les caractéristiques des aciers pour béton vendus au Cameroun ont été obtenues à l'ENSP depuis 1998. Ces résultats qui sont résumés par le Tableau 11, indiquent que leurs caractéristiques sont variables d'une année à l'autre.

Tableau 9: Caractéristiques du fer à béton importé (Couasnet Y. 2007)

	Limite	limite	Deformation	Deformation
	d'élasticité	de rupture	élastique	à la rupture
Nuance	fe(MPa)	fr(MPa)		
FeE220	215	330,49/490,00	1,075E-03	22%
FeE240	235	410,49/490,00	1,175E-03	25%
FeE400	400	480,00	2,000E-03	14%
FeE500	500	550,00	2,500E-03	12%

Tableau 10: Poids au mètre linéaire des armatures en acier pour différents diamètres (Couasnet Y. 2007).

	Armatures en acier utilisées dans la fabrication des bétons										
Diamètre	6	8	10	12	14	16	20				
en mm											
Poids en	0,222	0,394	0,616	0,887	1,208	1,578	2,466				
kg/ml											
Section	28,3	50,3	78,5	113	154	201	314				
en mm2											

Tableau 11: Caractéristiques moyennes des fers à béton vendus au Cameroun entre 1998 -2009 (Mamba et al 2009)

		Limite élastique Fe en MPa												
année	1998	1998 1999		2000 20		2001	2001 2007		2007			2009		
Limite élastique	max	min	max	min	max	min	max	min	max	min	max	min	max	min
Acier	MI	Pa	M	Pa	MF	Pa	MPa		MI	Pa	MP	Pa .	MF	'a
HA6	347,2	340,5	324,0	322,175	269,725	263,7	263,63	256,1	220	215	440	410	550,7	548,5
HA8	364,26	357,64	297,6	28,41	330,1	325	332,5	330,3	475	460	456	420	548,1	535,67
HA10	474,3	469,35	475	432,4	372,4	364,5	476,1	461,3	450	405	460	435	515,6	502
HA12	530,2	523,4	585,4	573,2	521,5	515,2	475,3	464,5	480	434	480	445	546,6	538,4

V.2.3 Coûts des barres d'aciers pour béton par région (Figures 14 à 16)

Les prix de vente des barres d'aciers hors transport varient en fonction du diamètre. Nos enquêtes révèlent que les Régions du Centre et du Littoral, qui sont les mieux fournis en acier, ont des prix de vente des barres d'acier les plus faibles. Par contre, la Région de l'Extrême Nord qui est la Région la moins fournie en acier enregistre le prix de vente des fers à béton le plus élevé.

Figure 14: Prix moyen de vente hors transport d'une barre HA12

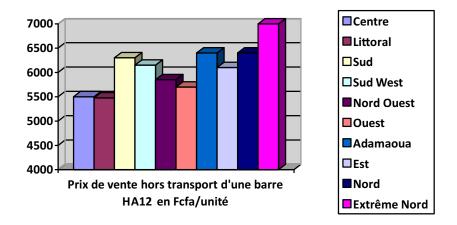


Figure 15: Prix moyen de vente hors transport d'une barre HA10

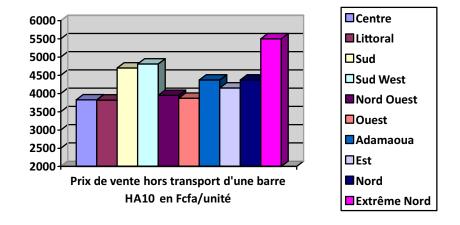


Figure 16: Prix moyen de vente hors transport d'une barre HA8

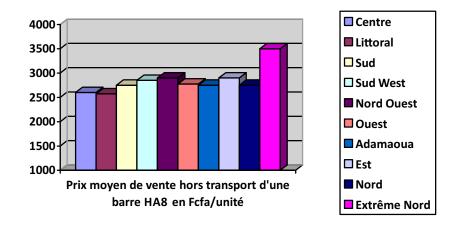
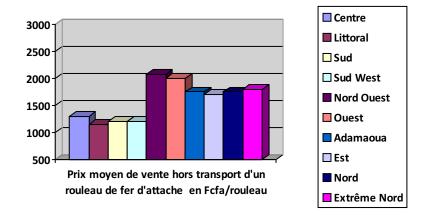



Figure 17: Prix moyen de vente hors transport d'une barre HA6

Figure 18: Prix moyen de vente hors transport d'un rouleau de fer d'attache

V.2.4 Faiblesses de la filière du fer à béton

Les faiblesses de cette filière sont les suivantes:

- l'insuffisance de l'offre du fer à béton (sous le quasi monopôle des trois principaux importateurs);
- l'opacité sur la qualité des produits vendus est la règle;
- l'absence des garanties après la vente du

produit;

- l'inégalité de la distribution du produit dans les régions. Si les régions du Centre et du littoral sont les mieux fournies en fer à béton, par contre celles du Nord et de l'Extrême Nord sont frappées souvent par des pénuries;
- l'inorganisation de la filière transport entre les points de vente et le client acheteur.

V.3 • Le ciment

V.3.1 Etat des lieux

Au Cameroun, le marché du ciment est constitué par deux types de produit : un produit de fabrication locale commercialisé par la société des Cimenteries du Cameroun (CimenCam) et des produits importés essentiellement par trois groupes (FOKOU, QUIEFEROU et AFRIQUE CONSTRUCTION), qui disposent d'un réseau de distribution solide s'étalant sur l'ensemble du territoire et couvrant même la zone CEMAC. Les enquêtes réalisées sur le terrain montrent que les ciments importés sont essentiellement d'origine chinoise, turque et coréenne. A la question de savoir pourquoi on ne trouve pas du ciment nigérian sur le marché local, les groupes importateurs parlent des problèmes de qualité de ce produit. Mais dans la partie septentrionale du Cameroun le secteur informel s'est emparé de ce créneau et c'est la raison pour laquelle on y trouve le ciment Nigérian.

La distribution des ciments importés et du ciment de fabrication locale est assurée par les grandes entreprises de distribution citées plus haut. L'acheminement du produit de la sortie de l'usine ou du port de Douala vers les centres de distribution se fait par voie ferroviaire et par routes. L'acheminent du produit des points de vente vers le client s'effectue par la route au moyen des camions.

V.3.2 Production

La production locale du ciment est réalisée par la société des Cimenteries du Cameroun (Cimencam). Celle-ci commercialise essentiellement du CPJ35. Sa production annuelle est évaluée à 800 000 tonnes/an. De récents aménagements dans ses unités de production permettront d'augmenter sa capacité de production à plus de 1 000 000 de tonnes par an. D'autres types de ciment ayant des caractéristiques particulières (CPJ 45, CPA45 et CPA50) peuvent être fournis par la société au client qui en fait la commande.

V.3.3 Caractéristiques du Ciment

Les caractéristiques du ciment de fabrication locale commercialisé sous le nom Cimencam sont résumées par le Tableau 12.

Tableau 12: Caractéristiques moyennes des quelques produits Cimencam (ENSP LGM 2007)

Type de ciment	Résistance	moyenne	Temps de	Surface
Cimencam	27jours	28jours	prise	spécifique
CPJ 35	15 MPa	39 MPa	2h45mn	28000cm ² /g
CPJ 45	23 MPa	50 MPa		
CPA 45	25 MPa	52 MPa	1	
CPA 50	25 MPa	58 MPa		

V.3.4 Les Coûts par Région (Figures 19 à 22)

a) Ciment Cimencam

Le prix de vente du ciment au Cameroun est fortement dépendant du contexte économique international du fait que, la seule entreprise locale de fabrication du ciment importe une partie du clinker qui entre dans la composition du ciment vendu sur place. En outre, une partie de sa production est écoulée vers d'autre pays de la zone CEMAC (à des prix intéressants pour le producteur), ce qui a pour effet de créer des pénuries de ciment.

Les résultats de nos enquêtes (annexes A 3 à A5) révèlent que : en 2009 le prix de vente le plus bas (et le plus élevé) du ciment hors transport était de 4750F par sac de 50kg dans le littoral (et de 6500F par sac de 50kg dans l'Adamaoua, le Nord et l'Extrême Nord). En prenant pour référence le prix du ciment vendu dans le Littoral, on constate que la différence entre le prix le plus bas et le plus élevé est de l'ordre 36%.

b) Ciment importé

Au regard des informations recueillies sur le terrain, nous observons que le prix de vente hors transport des ciments importés est plus élevé que le prix du ciment fabriqué localement. Pourtant, le coût de 50kg de ce ciment arrivé au Port Autonome de Douala varie entre 1792Fcfa et 1960Fcfa (Figure 21).

Le rapport entre le coût d'arrivé du ciment au port de Douala et son prix de vente dans l'arrière-pays (Figure 22) varie de 2.5 (à Douala) à 4.5 (à l'Extrême Nord).

V.3.5 Insuffisances de la filière Ciment

La filière ciment au Cameroun est victime de son organisation :

a) Organisation du système de production:

- Une seule société de produit du ciment au Cameroun (il n'y a pas de concurrence et c'est un monopole de fait);
- le clinker est en partie importé par cette société (alors que les résultats de la recherche semblent montrer que la totalité du clinker utilisé par cette société peut être fabriqué au Cameroun).

b) Organisation du système de distribution et des importations :

- les importations sont très peu diversifiées (ciment coréen, chinois et turque) et sont monopolisées par trois grands groupes alors que le Nigéria, pays voisin du Cameroun est un grand producteur de ciment;
- Le système de distribution est également contrôlé par ces trois grands groupes.

Figure 19: Prix moyen de vente hors transport d'un sac de ciment Cimencam

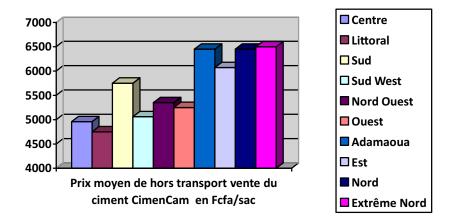


Figure 20: Prix moyen de vente hors transport d'un sac de ciment importé par région

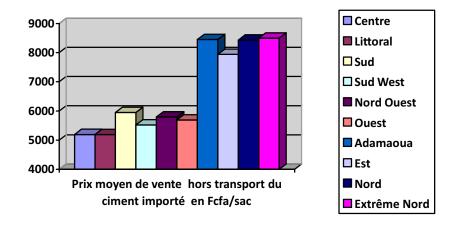


Figure 21: Coût moyen de 50kg de ciment importé arrivé au Port Autonome de Douala

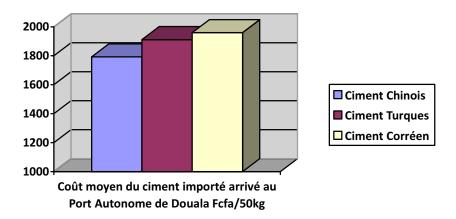
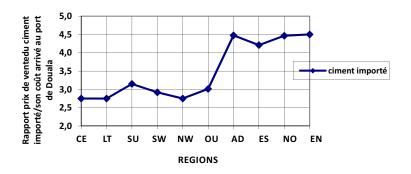



Figure 22: Rapport entre le prix de vente hors transport par Région du ciment importé et à son coût d'arrivé au Port Autonome de Douala

V.4 • Lebois

V.4.1 Etat des lieux

La production du bois au Cameroun est estimée à 2,5 millions de m3 par an, dont 1,5 millions proviennent du domaine forestier permanent. A ce jour, plus de 300 espèces sont commercialisables, mais une soixantaine seulement fait l'objet d'une exploitation régulière et 5 essences (Ayous, Azobe, Iroko et le Frake) représentent à elles seules près de 70% de la production totale. Le Cameroun compte plus de 70 usines de transformation du bois appartenant toutes aux grandes sociétés d'exploitation forestière qui se sont installées dans les points francs industriels ou en milieu urbain pour des raisons de facilité d'accès au port de Douala. Par contre sur le marché export (vers l'Europe et l'Asie); la commercialisation du bois est bien structurée. Celle-ci absorbe plus de 95% de bois de sciage et plus de 80% des grumes produits au Cameroun.

Dans le marché local (ignoré par les

exploitants forestiers), la commercialisation du bois reste inorganisée et consomme essentiellement les sciages et contre plaqués de 2^{ème} choix. Une bonne partie de la demande intérieure étant satisfaite par du bois débité par des scieurs artisanaux. Le transport du bois se fait de deux manières:

Pour les entreprises d'exploitation forestière, le transport des billes de bois de la forêt vers les usines de transformation se fait par camions.

Pour les exploitants artisanaux, les billes de bois sont débitées sur les lieux d'abattage, le bois débité est transporté par des manœuvres jusqu'au bord d'une route carrossable où des camions les transporteront vers les points de vente en région urbaine.

V.4.2 Caractéristiques

Les caractéristiques physiques et mécaniques des bois que l'on trouve sur le marché local sont résumées par le Tableau 13 et leurs caractéristiques de mise en œuvre par les Tableaux 14 et 16.

V.4 .3 Les coûts du bois par Région (Figures 23, 24)

L'examen attentif des prix de vente du bois par région révèle que : à l'exception de la Région du Sud (où les niveaux des prix sont relativement bas du fait que la filière est contrôlée par le secteur informel) ; on

constate que partout ailleurs, les prix sont relativement élevés et supérieurs ou égal à 60 000F/m3 pour le bois de coffrage et à 95 000F/m3 pour le bois de charpente. Les prix s'élèvent au fur et à mesure que la région est éloignée de la zone forestière (Nord, Extrême Nord).

Tableau 13: Caractéristiques moyennes de quelques bois vendus au Cameroun (ENSP-LMS 2007).

bois	Densité	dureté	Retrait	Retrait	Résistance	Résistance	module
			volumique	Radial	Compression	flexion	d'élasticité
			%	%	MPa	MPa	E+03()MPa
Acajou d'afrique	0,50 -0,60	1,8-4,2	0,36-0,45	3,2-4,6	44-48	80-90	9,00-9,60
Ayous	0,33 - 0,43	0,4 - 2,0	0,30-0,4	2,4-3,7	24-40	48-75	2,00-8,00
Azobe	1,00 - 1,20	9,5 - 12,5	0,63-0,75	7,00-8,00	95-100	170-200	15,00-20,00
Bete	0,59 - 0,72	3,0 - 6,0	0,4-0,5	3,9-5,0	50-70	100-140	10,00-12,80
Belinga	0,68 - 0,90	3,3-7,0	0,5-0,65	4,0-6,0	50-75	90-140	10,4-14,0
Bubinga	0,80 - 1,00	7,5-12,0	0,5-0,76	4,0-5,6	66,0-90,0	100-165	12,8-17,0
Bossé	0,60 - 0,70	3,0-6,0	0,42-0,50	3,4-5,0	47-65	90-140	8,00-13,00
Doussié	0,70-0,87	5,0 -10,0	0,36-0,50	2,00-3,80	56-90	80-160	12,00-17,00
Eucalyptus	0,5-0,70	2,0-6,0	0,24-0,74	2,00-7,00	30-52	25-90	9,0-15,5
Hevéa	0,58 - 0,70	2,4-3,2	0,36-0,45	2,00-2,80	40-60	75-100	7,80-11,00
Frake	0,40 - 0,70	1,0 - 4,0	0,3-0,67	2,00-6,00	28-60	48-130	4,8-13,0
Iroko	0,56 - 0,75	2,5-6,0	0,4-0,53	3,0-4,0	42-65	60-130	7,2-14
Moabi	0,80 - 0,95	5,5-8,0	0,6-0,68	6,0-7,0	65-85	135-170	15-19
Movingui	0,65 - 0,78	4,0-8,0	0,44-0,56	3,0-4,4	50-70	110-140	9,0-13,0
Okoumé	0,32 - 0,50	0,2-2,0	0,3-0,4	3,3-5,0	25-45	45-85	5,5-9,2
Padouck	0,66-0,92	4,7-10,0	0,4-0,55	2,5-3,7	55-80	95-150	10,8-15
Sapelli	0,58 -0,78	3,0-6,5	0,41-0,52	4,0-6,0	50-72	95-135	9,0-14,0
Tali	0,80 - 1,00	5,0-13,0	0,45-0,80	4,0-6,0	70-90	100-180	12,0-18,0
Teck	0,55 - 0,82	3,0-9,0	0,3-0,45	2,0-3,8	45-70	90-140	8,0-18,0

Tableau 14: Caractéristiques de mise en œuvre de quelques bois vendus au Cameroun (ENSP-LMS 2007).

	Acajou d'Af,	Azobe	Ayous	Bete	Bilinga	Bubinga
Champignons	Moyenne	Bonne	Mauvaise	Moyenne	Bonne	Bonne
Lyctus	Bonne	Bonne	Mauvaise	Bonne	Bonne	Bonne
Termites	Mauvaise	Bonne	Mauvaise	Bonne	Bonne	Bonne
Taux de silice	<0,05%	<0,05%	<0,05%	<0,05%	<0,05%	<0,05%
Sechage	Rapide	Difficile	Rapide	Normale	Difficile	Difficile
Stabilité	Moyenne	Peu stable	Moyenne	Peu stable	Moyenne	Peu stable
Imprégnabilité	Mauvaise	Mauvaise	Moyenne	Mauvaise	Moyenne	Mauvaise
tion en%	Moyen(26)	Moyen(28)	Moyen(29)	Moyen(27)	Moyen(25)	Moyen(23)
	Champignons Lyctus Termites Taux de silice Sechage Stabilité Imprégnabilité	Lyctus Bonne Termites Mauvaise Taux de silice <0,05% Sechage Rapide Stabilité Moyenne Imprégnabilité Mauvaise	Champignons Moyenne Bonne Lyctus Bonne Bonne Termites Mauvaise Bonne Taux de silice <0,05% <0,05% Sechage Rapide Difficile Stabilité Moyenne Peu stable Imprégnabilité Mauvaise Mauvaise	Champignons Moyenne Bonne Mauvaise Lyctus Bonne Bonne Mauvaise Termites Mauvaise Bonne Mauvaise Taux de silice <0,05% <0,05% <0,05% Sechage Rapide Difficile Rapide Stabilité Moyenne Peu stable Moyenne Imprégnabilité Mauvaise Mauvaise Moyenne	Champignons Moyenne Bonne Mauvaise Moyenne Lyctus Bonne Bonne Mauvaise Bonne Termites Mauvaise Bonne Mauvaise Bonne Taux de silice <0,05% <0,05% <0,05% <0,05% Sechage Rapide Difficile Rapide Normale Stabilité Moyenne Peu stable Moyenne Peu stable Imprégnabilité Mauvaise Mauvaise Moyenne Mauvaise	Champignons Moyenne Bonne Mauvaise Moyenne Bonne Lyctus Bonne Bonne Mauvaise Bonne Bonne Termites Mauvaise Bonne Mauvaise Bonne Bonne Taux de silice <0,05% <0,05% <0,05% <0,05% <0,05% Sechage Rapide Difficile Rapide Normale Difficile Stabilité Moyenne Peu stable Moyenne Peu stable Moyenne Imprégnabilité Mauvaise Mauvaise Moyenne Mauvaise Moyenne

Tableau 15: Caractéristiques de mise en œuvre de quelques bois vendus au Cameroun (ENSP-LMS 2007).

Essences		Bubinga	Bossé	Eucalyptus	Doussié	Frake	Hévéa	Iroko
	Champignons	Bonne	Moyenne	Moyenne	Bonne	Mauvaise	Mauvaise	moyenne
Résistance								
aux	Lyctus	Bonne	Bonne	Bonne	Bonne	Mauvaise	Mauvaise	bonne
	Termites	Bonne	Mauvaise	Bonne	Bonne	Mauvaise	Mauvaise	moyenne
	Taux de silice	<0,05%	<1%	<1%	<0,05%	<0,1%	<0,05%	<0,05%
	Séchage	Difficile	Normal	Normal	Difficile	Rapide	Difficile	normal
	Stabilité	Peu stable	Stable	Stable	Stable	Moyenne	Peu stable	moyenne
	Imprégnabilité	Mauvaise	Mauvaise	Moyenne	Mauvaise	Mauvaise	Bonne	mauvaise
Point de satur	ation en%	Moyen(23)	Moyen(29)	Moyen(23)	Bas(20)	Moyen(29)	Bas(24)	bas(23)

Tableau 16: Caractéristiques de mise en œuvre de quelques bois vendus au Cameroun (ENSP-LMS 2007).

Essenæs		Iroko	Moabi	Movingui	Okoumé	Padoudk	Sapelli	
	Champignons	Mbyenne	Bonne	Moyenne	Mauvaise	Bonne	Mbyenne	
Résistance aux	Lyctus	Banne	Borne	Banne	Bonne	Bonne	Banne	
	Termites	Mbyeme	Bonne	Moyenne	Mauvaise	Bonne	Mbyenne	
	Taux de silice	<0,05%	[1-0,1%]	[0,15-0,55%]	[1-0,1%]	<0,05%	<0,05%	
	Sechage	Normal	diff	Normal	Rapide	Normal	Normal	
	Stabilité	Mbyenne	Peu stable	Moyenne	Peu stable	Stable	Mbyenne	
	Imprégnabilité	Mauvaise	Mauvaise	Mauvaise	Mauvaise	Moyenne	mauvaise	
Point de saturat	ion en%	Bas(23)	Bas(23)	Bas(23)	Elevé(49)	Bas(23)	Mbyen(29)	

Figure 23: Prix moyen de vente hors transport du bois de coffrage par Région.

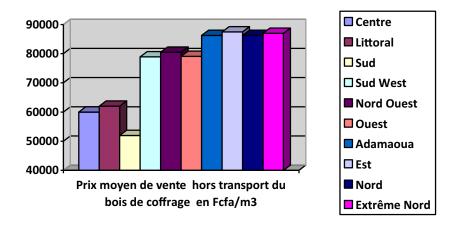
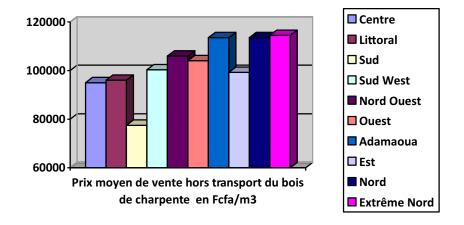



Figure 24: Prix moyen de vente hors transport du bois de charpente par Région

V.4.4 Autres destinations du bois

En dehors du secteur des Bâtiments et Travaux Publics (BTP), où il est utilisé comme éléments des structures, ou revêtement: des sols, murs et toitures, le bois est une matière première pour l'industrie de la cellulose et de la construction navale. C'est un très bon combustible, il est utilisé dans la fabrication des isolants, des bétons de bois et du bois reconstitué à partir de ses déchets.

V.4.5 Les insuffisances de la filière bois

Sur le plan local le marché intérieur souffre de:

- l'organisation des usines premières transformation appartenant aux exploitants forestiers dont les activités sont essentiellement tournées vers l'export;
- l'emprise du secteur informel sur l'offre en bois dans le marché intérieur;
- · -l'inorganisation du secteur de distribution;

 l'inorganisation de la filière transport entre les points de débitage et les dépôts de séchage ou de vente.

V.5 • • Les produits à base de ciment

V.5.1 Les bétons et mortiers

Le béton est un matériau composite de construction fabriqué à partir des granulats (constitués de sable et graviers) agglomérés par un liant.

- Quand le liant utilisé est hydraulique (le ciment) on parle du Béton de Ciment.
- Lorsque le liant est hydrocarboné (le bitume) on parle du Béton Bitumineux.
- Quand les granulats utilisés avec le liant sont exclusivement formés du sable : on parle du Mortier.
- Si l'on optimise la granulométrie du sable utilisé pour le mortier : on parle du Béton de Sable ou Micro-Béton.
- Si les granulats sont remplacés par les fibres: on parle du Béton de Fibre.

Le choix des proportions de chacun de ces constituants d'un béton ou d'un mortier afin d'obtenir les caractéristiques mécaniques désirées s'appelle la formulation (ENSP-LGM 2007).

V.5.1.1 Classification des Bétons et Mortiers

a) Les bétons de ciment

Les bétons peuvent être classés en utilisant plusieurs critères. Le critère qui nous intéresse ici est celui de la résistance à la compression (Tableau 17). En application de la norme NF P 18-011 les bétons de masse volumique normale et lourds sont classés selon leur résistance à la compression sous la forme de la classe Cx/y.

Où:

- « x » est la résistance caractéristique à la compression du béton exigée à 28 jours, mesurée sur les éprouvettes cylindriques de 150mm de diamètre sur 300mm de haut;
- « y » désigne la résistance caractéristique à la compression du béton exigée à 28 jours, mesurée sur des éprouvettes cubiques de 150mm de côté. Les résistances caractéristiques étant exprimées en MPa.

Tableau 17: Classification des bétons (Couasnet Y. 2007)

	Béton Ordinaire (BO)				Béton Haute Performance (BHP)										
Classe Béton	C8/10	C12/15	C16/20	C25/25	C25/30	C30/37	C35/45	C40/50 C45/55	C50/60	C55/67	C60/75	C70/85	C80/95	C90/105	C100/115

b) Les Mortiers de ciment

Les mortiers de ciment peuvent également être classés en utilisant le critère de résistance à la compression (Tableau 18) sous la forme de Mx/y, où: x/y est la résistance caractéristique à la compression du mortier exigée à 28 jours en Mpa, sur les éprouvettes cylindriques/cubiques

Tableau 18 :Classification des mortiers (Couasnet Y. 2007)

			Mortiers	Ordinair	e (MO)		
Classe de Mortier	C8/10	C12/15	C16/20	C25/25	C25/30	C30/37	C35/45

V.5.2 Pratiques des bétons et mortier de ciment au Cameroun

a) Les bétons Sur les 6 possibilités (Tableau 19) de fabrication des bétons qui existent, le Cameroun n'en utilise qu'une seule : le Béton Ordinaire. Compte tenu de l'indisponibilité des graviers dans certaines zones, on se serait attendu que les Micro- Bétons soient couramment employés, mais il n'en est rien

Tableau 19: Les types des bétons utilisés au Cameroun

		Bétons utilisés	Recherche
N°	Type de Béton	au Cameroun	au Cameroun
1		oui	oui
2	Micro Béton	non	oui
3	Béton mousse	non	non
4	Béton poreux	non	non
5	Béton de fibre	non	oui
6	Béton Haute Performance	non	non

Tableau 20: Caractéristiques physiques moyennes des bétons de ciment (ENSP-LMG 2007).

Dilatation	Conductivité	Température	Chaleur	Masse	Pouvoir	Fréquence
thermique	thermique	de fusion	spécifique	volumique	calorifique	critique
m/m°C	W/m°C	°C	kcal/°C.kg	kg/m3	Mj/kg	Hz
1,00E-05	1,75	1500	0,2	2450	0	1900

Les enquêtes que nous avons effectuées sur le terrain indiquent que : les bétons ordinaires fabriqués au Cameroun, sont destinés à la fabrication des éléments de structure (semelles des fondations, longrines, poteaux, poutres, linteaux...) des dallages et planchers, des toitures terrasses, des sanitaires, des buses, des pavés, des carreaux, des éviers, des pots pour W. C., .etc.

L'élaboration d'un béton de qualité, exige

l'utilisation des graviers propres et bien calibrés que seules les grandes sociétés d'exploitation de carrière sont à mesure de fournir. Malheureusement ces grandes sociétés ne couvrent pas toute l'étendue du territoire. Nous avons observé que dans des zones où il est impossible d'acheter le gravier à un coût raisonnable ; la construction de l'habitat économique passerait par le développement des Micro-Bétons.

Photo 4: Eviers et pot de toilette en béton de ciment

Photo 5: Pavés en mortier de ciment

b) Les mortiers

Le mortier sert de liaison entre agrégats (fabrications d'agglomérés), il est utilisé dans la constitution des enduits, des chapes et des joints. On distingue cinq types de mortiers:

- les mortiers de ciment,
- les mortiers de terre.
- les mortiers bâtards,
- Les mortiers de chaux hydraulique,
- Les mortiers de plâtre.

Les enquêtes effectuées sur le terrain nous révèlent que : malgré l'existence de plusieurs types de mortier, seuls deux types de mortier sont utilisés au Cameroun :

• les mortiers de ciment (pour la fabrication

- des agglomérés, l'élévation des maçonneries...etc.);
- les mortiers de terre (pour la fabrication des blocs de terre stabilisée et les joints pour briques de terre).

Ces deux types de mortier sont utilisés à cause de leurs faibles coûts. Sur le terrain nous avons constaté que les mortiers de ciment sont utilisés pour la fabrication des parpaings, des pavés pour sol, des tuiles, pour le jointement des agglomérés pour maçonneries et pour la pose des revêtements au sol. Au Cameroun, l'aggloméré de ciment le plus connu est le parpaing.

Tableau 21: Types des mortiers utilisés au Cameroun

		Mortier utilisés	Composition
N°	Type de mortiers	au Cameroun	
1	Mortier de ciment	oui	sable +ciment+eau
2	Mortier de terre	oui	sable +argile+ciment+eau
3	Mortier batard	non	sable +ciment+chaux aeriènne+eau
4	Mortier de chaux hydraulique	non	sable +chaux hydraulique+eau
5	Mortier de plâtre	non	sable +plâtre +eau

Tableau 22: Caractéristiques physiques moyennes des mortiers de ciment (ENSP-LGM 2007)

Dilatation	Conductivité	Température	Chaleur	Masse	Pouvoir	Fréquence
thermique	thermique	de fusion	spécifique	volumique	calorifique	critique
m/m°C	W/m°C	°C	kcal/°C.kg	kg/m3	Mj/kg	Hz
(8 à 11)E-06	1,15	1500	0,2	2150	0	1900

V.5.3 Les agglomérés de ciment

Nous entendons par agglomérés de ciment, les produits commercialisés sous les noms : parpaings de ciment, hourdis, claustras, pavés de ciment, carreaux de ciment et blocs de ciment.

V.5.3.1 Etat des lieux

Nos enquêtes révèlent l'existence d'une multitude de petites unités de fabrication artisanale de ces agglomérés de ciment utilisant une technologie rudimentaire. Elles sont installées dans tous les chefs-lieux de département du Cameroun. La qualité des produits fabriqués par ces unités est approximative à cause justement de la technologie utilisée. Nous avons observé qu'une PME installée à Douala (BRIC) s'est spécialisée dans la production de ces agglomérés de ciment et utilise une technologie élaborée. Les produits fabriqués par cette PME sont de bonne qualité, mais leur prix de vente semble très élevé.

La filière de production des agglomérés de ciment est structurée de la façon suivante: les unités de fabrication des agglomérés s'appuient sur,

- l'industrie de la cimenterie pour l'obtention des liants:
- et sur la filière des exploitants des carrières pour se procurer les granulats.

Une telle organisation est intéressante parce que les fabricants d'agglomérés, ne dispersent pas leurs énergies et moyens financiers limités (comme c'est le cas dans la filière produits de terre) à extraire dans les carrières les granulats qu'ils utilisent. Ils ont la possibilité de se concentrer sur la fabrication des agglomérés afin d'améliorer la qualité de

leurs produits.

V.3.2 Les parpaings

Au Cameroun l'aggloméré le plus populaire est le parpaing de ciment (ou parpaing). On trouve sur le marché les parpaings de 10 (10x20x40), de 15(15x20x40) et de 20(20x20x40). Malheureusement, on ne trouve pas sur le marché (et ce qui est très limitatif en terme des dispositions constructives):

- les blocs ou parpaings d'angle;
- les blocs ou parpaings de coupe;
- les blocs ou parpaings d'about;
- les blocs ou parpaings linteaux.

V.5.3.3 Méthode de fabrication d'agglomérés

La technologie utilisée par les unités pour la fabrication des agglomérés de ciment est rudimentaire:

- pour les parpaings, le mortier de ciment est introduit dans un moule et par le retournement de celui-ci, le produit est déposé au sol;
- pour les pavés, carreaux claustras..., le mortier de ciment est introduit dans un moule où il est éventuellement vibré. Le moule est déposé sur une surface plane où il est démoulé 24 heures plus tard.

a) Inconvénients de la méthode :

Les inconvénients de cette méthode de fabrication sont les suivants:

- sa pénibilité;
- son faible rendement (200 parpaings de 20 par jour);
- la qualité médiocre des produits.

b) Avantage de la méthode

- Le coût de l'investissement qui se réduit au prix d'achat du moule est faible.
- Son utilisation est simple, à la portée de tous ; d'où le succès qu'il connait en auto construction.
- Pour améliorer la qualité des agglomérés, il est indispensable :
- de faire une étude de formulation du mortier, ce qui exige un minimum de connaissances et conduit à une augmentation de la teneur en liant;
- ou d'acheter les usines ou pondeuses à blocs qui utilisent simultanément le moulage, la pression et les vibrations.
 Cette solution qui est très coûteuse

conduit inéluctablement à une réduction de la teneur en liant.

V.5.3.4 Classification des agglomérés

Les blocs de ciment pour maçonneries sont souvent classés d'après leurs valeurs de la résistance nominale. Pour un bloc courant de classe Bx: x est la valeur de la contrainte à la rupture exprimée en bars: 95% des blocs fabriqués dans une classe donnée doivent présenter une valeur de la résistance à l'écrasement égale ou supérieure à cette valeur (fractile 0.05) et aucun résultat ne doit être inférieur à 80% de la valeur de cette classe.

Tableau 23: Classification des blocs de ciment pour maçonneries (Couasnet Y. 2007)

Catégorie	Type de	Symbole	Type de	classe	de	résista	ance		
des blocs	granulats	d'identification	blocs						
		Résistance garant	tie en MPa	4	6	8	12	16	20
			Creux	B40	B60	B80	B120	B160	B200
A enduire	courant	В	perforés			B80	B120	B160	B200
			plein			B80	B120	B160	B200
			Creux		P60	P80	P120	P160	P200
Apparent	Courant	Р	perforés			P80	P120	P160	P200
			plein			P80	P120	P160	P200
Catégorie	Type de	Symbole	Type de	classe	de	résista	ance	-	
des blocs	granulats	d'identification	blocs						
		Résistance garant	tie en MPa	2,5	3,5	4	4,5	5,5	7
			Creux	L25		L40			
A enduire	Léger	L	perforés		L35		L45		L70
			plein		L35		L45		L70
			Creux			LP40			
Apparent	Léger	LP	perforés				LP45		LP70
			plein				LP45		LP70

V.5.3.5 Caractéristiques des agglomérés de ciment du Cameroun

Les principales caractéristiques des agglomérés de ciment fabriqués au Cameroun sont résumées par les Tableaux 24 et 25. En

observant ces tableaux on constate que les caractéristiques mécaniques des produits proposés par des artisans (<1MPa) sont médiocres et non conformes aux normes en vigueur au Cameroun.

Tableau 24: Caractéristiques des parpaings fabriqués au Cameroun (ENSP- LGM 2007, BRIC 2007)

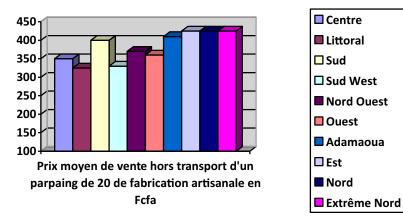
Parpaings de:	30		20		15		10	
Type de produit	PME	Artisa ns	PME	Artisa ns	PME	Artisans	PME	Artisans
Dimensions	30x 40x20	30x40x20	20x20x40	20x 40x20	15x 40x20	15x 40x20	10x 40x20	10x 40x20
Poi ds	19,5kg		17kg	16kg	14kg	11,22kg	11kg	8kg
Résistance à 28jours	5,3MPa		4,3MPa	<1MPa	4,3MPa	<1MPa	4,3MPa	<1MPa
Process	VCS		VCS	М	vcs	М	VCS	М
Capacité journalière	4000		6000	220	8000	300	12000	370
Prix Unitaire Douala(Fcfa)	990		565	325	495	225	375	190
Usage	Fondations		Fondations	Fondations	Elévation	Elévation	Elévation	Elévation

M=manuelle, VCS=Vibrations + Compression Statique

Tableau 25 : Caractéristiques des agglomérés de ciment fabriqués au Cameroun (ENSP- LGM 2007, BRIC 2007).

	Hourdis		Briquette	1	Briquette	2	PAVES auto	bloquants	
Type de produit	PME	Artisans	PME	Artisans	PME	Artisans	PME	Artisans	
Dimensions	15x20x50		7x10x22		5x10x22		Sans obj	Sans objet	
Poi ds	18kg	13,72	3,2 kg		2,3kg		3,2kg	2,5kg	
Résistance à 28jours	5,3MPa	<1MPa	4,3MPa		4,3MPa		4,3MPa	<1MPa	
Process	VCS		VCS		VCS		VCS		
Capacité journalière	6000	200	48000		50000		50000	400	
Prix Unitaire Douala	670F	400F	275F		220F		9800F/m2	5000F/m2	
Usage	Plancher		Elévation	Elévation	Elévation	Elévation	Ha bita tion	Habitati on	

Photo 6: hourdis en mortier de ciment et moule pour hourdis



V.5.3.6 Les coûts des agglomérés de ciment (Figure 25)

Sans nuire à la généralité, en s'intéressant seulement aux parpaings de 20 on constate que

les prix de vente des produits hors transport suivent à peu de chose près l'évolution du prix de vente du ciment Cimencam.

Figure 25: Prix moyen de vente hors transport d'un parpaing de 20 par Région.

V.5.3.7 Les insuffisances de la filière des agglomérés de ciment

Les insuffisances de la filière des agglomérés de ciment au Cameroun sont les suivantes:

 la filière est anarchique et évolue dans un secteur informel dominé par les artisans inconscients du risque qu'ils font courir en vendant aux clients des produits de mauvaise qualité.

- la technologie utilisée est rudimentaire et constitue un obstacle pour l'augmentation de la production;
- les artisans producteurs ont une vague connaissance des caractéristiques des ciments ou des granulats utilisés et ne connaissent même pas l'existence des méthodes de formulations des mortiers et

bétons(les recettes utilisées ont été apprises dans le tas et sont un obstacle à l'amélioration de la qualité des produits vendus);

- le marché des agglomérés de ciment semble incontrôlé malgré l'existence des normes.
- une seule entreprise bien structurée parvient à vend et fabrique des produits de meilleure qualité conforment aux normes en vigueurs;
- la production des agglomérés de bonne qualité est très limitée;
- la production des agglomérés de mauvaise qualité est en partie due au non contrôle de leur qualité par les pouvoirs publics.

V.6 • Les tuiles en ciment

V.6.1 Historique (Zanfack H. 1999)

Vers les années 1992, l'intérêt des camerounais pour les matériaux locaux de construction, encouragé par les autorités, s'est accru. La dévaluation du franc CFA intervenue le 1er Janvier 1994, n'a fait qu'accroître cet intérêt. Afin d'accompagner cet intérêt de la population pour les matériaux locaux, un Centre de Formation pour la fabrication des tuiles flamandes en vibro ciment fut créé par le MINUH et installé au lieudit Ekounou à Yaoundé. Ce centre a contribué à la formation de plusieurs techniciens spécialisés dans la fabrication des tuiles. A la même époque, une vingtaine de fabricants des tuiles en vibrociment étaient installés à Yaoundé. Plusieurs séminaires de formation sur le métier de couvreurs (pour tuiles flamandes) et charpentiers furent organisés en partenariat avec l'ONUDI, L'ENSP et le MINUH. Parallèlement à cette formation pour les couvreurs, en partenariat avec l'ENSP, le CRATerre, l'ONUDI et le MINUH plusieurs ingénieurs, techniciens et entrepreneurs furent formés aux techniques de fabrication des blocs de terre stabilisés et de gestion d'une unité de production des blocs de terre. Le partenariat ENSP –CRATerre-SIC-MINUH conduisit à la fabrication de deux maisons témoins en blocs de terre stabilisé au Camp SIC de la Cité verte à Yaoundé (Photos 7 et 8).

Le Partenariat ENSP- CFD avec les entreprises formées dans les techniques de construction en terre permit:

- l'édification de l'annexe de la faculté des sciences de l'Université de Yaoundé (Lieu-dit Lycée Leclerc). Photo 9;
- l'extension de l'ENSP (Photo 10);
- la construction d'un gymnase de sport de combat à l'INJS de Yaoundé (Photos 11 et 12).

Aujourd'hui le bon état de tous ces bâtiments construits en blocs de terre stabilisée est un témoignage de la compétence des techniciens qui ont participé à la construction de ces ouvrages.

Photo 7: Construction d'une maison témoin au camp SIC (lieu dit Cité Verte) à Yaoundé vers les années 1992.

Photo 8: Vue de la maison témoin du camp SIC (lieu dit Cité Verte) à Yaoundé en 2009 soit 17ans plus tard.

Photo 9: Une vue de l'annexe de la faculté des Sciences de Yaoundé I

Photo 10: Une vue de l'extension de l'Ecole Nationale Supérieure Polytechnique de Yaoundé âgée de 15 ans (en 2009).

Photo 11: Construction d'un gymnase de sport de combat à l'INJS de Yaoundé vers les années 1994.

Photo 12: la Vue intérieur de ce gymnase en 2009 soit 15ans plus tard.

Une enquête suivie d'une campagne d'essais furent réalisées en 1996 [12] sur les tuiles flamandes en vibro ciment fabriquées au Cameroun. Les résultats obtenus (très alarmants pour l'époque avaient fait l'objet d'un mémoire d'ingénieur) révélaient que : plus de 85% des tuiles mises sur le marché ne respectaient ni les Normes Françaises ni les Normes BS (British Standard).

Une enquête que nous avions réalisée en 2006 à Yaoundé, nous avait montré que :

- Les couvertures en tuiles de la plupart des maisons (construites vers les années 1994) avaient été remplacées par les couvertures en tôles d'aluminium;
- La totalité des fabricants de tuiles de l'époque ont disparu; certains se sont recyclés dans la fabrication des agglomérés de ciment sous le prétexte que les tuiles vendues leur créaient beaucoup de problèmes (problèmes d'étanchéité, et d'instabilité des couleurs...).

Aujourd'hui la MIPROMALO s'efforce

tant bien que mal de promouvoir à nouveau la fabrication des tuiles en vibro mortier ou ciment.

V.6.2 Etat des lieux des tuiles à base de ciment

Aujourd'hui, le nombre des fabricants de tuiles s'est considérablement réduit: on en compte moins de cinq sur toute l'étendue du territoire. Il existe cependant, une seule PME très bien organisée : la Building and Roofing Industry of Cameroon (BRIC) installée à Douala qui fabrique et commercialise des tuiles en béton double roman de très bonne qualité et qui sont garanties pour 25ans.

Les autres fabricants sont de petites unités artisanales qui continuent à fabriquer les Tuiles Flamandes (vibro - ciment) non garanties par les fabricants. Pour ces tuiles, il se pose toujours des problèmes de stabilité à long terme et de la qualité des produits qui est liée à la technologie rudimentaire utilisée.

Photo 13: Toiture en tuile flamande vibro-ciment âgée de moins de 2ans (problèmes de stabilité de la couleur et de l'humidité).

Photo 14: Une vue de l'intérieur de la toiture précédente en tuile flamande âgée de 2ans (problème d'humidité).

Photo 15: Couverture en tuile double roman âgée de plus de 5ans.

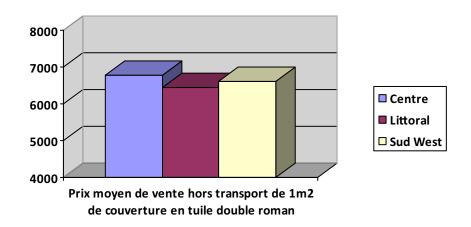
Photo 16: Couverture en tuile béton double roman verte âgée de plus de 10ans.

V.6.3Caractéristiques des tuiles

Tableau 26: Caractéristiques des tuiles en vibro-mortier de ciment(ENSP-LGM 2007).

	Tuile en vibro-mortier(flamande)				
	Yaoundé	Douala	Buea	Bamenda	
Poids au m2 de toiture	34kg	34kg	34kg	34kg	
Nombre des tuiles/m2	12,5	12,5	12,5	12,5	
Prix au m2 de toiture(FCFA)					
nature	3500	3450	3540	3795	
coloré	4800	4650	4760	5085	
Résistance à la flexion		<50kg			
Dimensions	25cm x 50cm	1			
Capacité (Unités artisanales)	100 tuiles/jours				
Garanties	Pas des garanties				

Tableau 27: Caractéristiques des tuiles en béton double roman en mortier de ciment (BRIC 2009).


	Tuile Double roman				
	Yaoundé	Douala	Buea	Bamenda	
Poids au m2 de toiture	42kg	42kg	42kg	42kg	
Nombre des tuiles/m2	10	10	10	10	
Prix au m2 de toiture(FCFA)					
nature	6775	6450	6615	7095	
Acrylic Rouge/noir	8820	8400	8610	9240	
Verte	11775	11210	11495	12335	
Résistance à la flexion		>120kg			
Dimensions	42cm x 33cm	1			
Capacité de production	12000 tuiles/jours				
Garanties	25 ans				

V.6.4 Les coûts des tuiles en béton double Roman

Nous nous intéressons aux coûts des tuiles respectant les normes en vigueurs qui, malheureusement, à cause d'un marché très

réduit, ne se retrouvent pas dans toutes les régions du Cameroun. Nous présentons le prix de vente moyen d'un mètre carré de tuiles dans les régions où nous avons eu cette information (Tableaux 26, 27 et Figure 28).

Figure 26: Prix moyen de vente hors transport de 1m2 de tuile en béton double Romand par Région.

V.6.5 Les insuffisances de la filière Tuiles de ciment

La filière tuiles en béton ou mortier du ciment souffre de:

l'insuffisance de la demande en

couverture de tuile;

 de la non diversité des produits (car seule la tuile en béton double Roman commercialisée par BRIC est conforme aux normes en vigueur au Cameroun);

- l'insuffisance de sa production, bien que la société BRIC soit capable de produire plus de 3 millions de tuiles par an:
- l'inorganisation du secteur transport entre les points de vente et le client acheteur.

V.7 • Les produits de terre

V.7.1 Etat des lieux

a) Produits de terre moulée

Les produits de terre moulée ou blocs de terre moulée ou adobes sont obtenus à partir d'une terre plastique ou liquide (éventuellement mélangée à un stabilisant) et homogénéisée puis façonnée à la main ou au moule en bois et séchée. Les caractéristiques mécaniques de ces produits sont médiocres, sa production ne se fait que dans le cadre de l'auto construction. Dans les grandes agglomérations comme Yaoundé et Douala, la production des adobes façonnés à la main est aujourd'hui délaissée au profit des blocs de terre comprimée et stabilisée. Par contre, dans les Régions de l'Ouest et Nord West, cette

technique est très utilisée par les populations locales

b) Produits de terre stabilisée et comprimée

La stabilisation de la terre par incorporation d'un liant hydraulique (ciment ou chaux) ou chimique et compression mécanique est une approche moderne permettant la fabrication des blocs de terre stabilisée, dont le degré de mécanisation et le niveau d'investissement sont modulables en fonction de l'importance des besoins en logement. Cette technique a connu un développement important vers les années 1990. Mais aujourd'hui les matériaux souffrent de l'handicap née d'une faible demande des blocs de terre stabilisée sur le marché malgré l'existence d'une norme camerounaise et africaine. La fabrication des blocs de terre stabilisée ne se fait que sur commande par des unités de fabrication des briques cuites. Son coût dépend fortement du prix d'achat du stabilisant.

Photo 17: Blocs de terre comprimée et stabilisée(1990)

Photo 18: Stock des blocs de terre comprimée (en 2009)

c) Produits à base d'argile

Les produits à base d'argile concernent : les briques et tuiles de terre cuite. Les gisements d'argile pour terre cuite se trouvent sur toute l'étendue du territoire camerounais. Il est par conséquent toujours possible de trouver des gisements à proximité d'une agglomération qui est un centre potentiel de consommation.

La production des briques cuites est assurée par quelques unités artisanales qui cuisent leurs produits dans des fours rustiques fonctionnant au bois. Les caractéristiques de ces produits sont résumées par les Tableaux 28 et 29. L'ensemble des responsables de ces unités disent préférer produire la brique cuite à cause de sa plus-value malgré la faible demande.

c1) Briques de terre cuite

Photo 19: Stock de brique de terre cuite (en 2009)

c2) Insuffisances des briques cuites

La mauvaise qualité des briques cuites qu'on trouve sur le marché a quatre origines :

- l'absence d'une norme définissant les spécifications des matières premières à utiliser pour la fabrication des briques cuites;
- le non traitement de la matière première utilisée (en général la terre argileuse extraite est directement utilisée pour la fabrication des blocs de terre crue qui, après séchage, subissent ensuite une cuisson);
- la présence de la kaolinite (minéral argileux réfractaire) dans certaines terres argileuses des Régions du Centre, du Sud, de l'Est et l'Ouest rend leur cuisson difficile;

 la mauvaise qualité des fours utilisés (impossibilité de contrôler la montée ou la descente en température et le niveau de la température de cuisson).

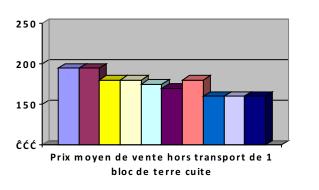
d) Tuiles de terre cuite

La production des tuiles de terre cuite est inexistante au Cameroun.

La fabrication des produits de terre cuite (bloc de terre) se fait dans les banlieues des villes qui sont des centres de consommation. Ce choix stratégique permet de réduire l'impact des coûts de transport sur leur prix de vente.

Tableau 28: Caractéristiques moyennes des briques de terre cuite du Cameroun (ENSP-LGM 2007).

Désignation	Dimensions	Densité	Contrainte de	Contrainte de	Destination
du produit			compression	traction	
Brique de terre cuite	29 x 14 x7	<2,1	<6,5MPa	<2,0MPa	maçonnerie
Briquette de terre cuite	21x10x6	<2,1	<6,5MPa	<2,0MPa	maçonnerie
Plaquettes de terre cuite	21 x10x4	<2,1	<6,5MPa	<2,0MPa	revêtement


Tableau 29: Caractéristiques physiques moyennes des briques de terre cuite (ENSP-LGM 2007).

Dilatation	Conductivité	Chaleur	Pouvoir
thermique	thermique	spécifique	calorifique
m/m°C	W/m°C	kcal/°C.kg	Mj/kg
5,00E-05	1,15	0,205	0

V.7.2 les coûts des produits de terre crue ou cuite

D'une région à l'autre, les coûts des produits de terre cuite varient très peu. Toutefois la forte demande que l'on observe dans les villes de Yaoundé et Douala a tendance à augmenter les prix de vente hors transport dans ces localités.

Figure 27: Prix moyen de vente hors transport d'un bloc de terre cuite Région.

V.7.3 Les insuffisances des produits de terre

La filière produit de terre est mal organisée du fait que les fabricants des produits de terre sont également d'exploitants des carrières de terre (qui exigent des moyens financiers et compétences qu'ils n'ont pas).

Globalement les produits de terre souffrent de :

- la très faible demande liée à un manque de confiance des clients aux produits de terre;
- la mauvaise qualité des produits de terre cuite (bien qu'il soit possible de fabriquer les blocs de terre stabilisée et comprimée de très bonne qualité);
- l'organisation artisanale des unités de production, facteur limitatif en ce qui concerne la capacité de fabrication des blocs de terre de bonne qualité (qui ne dépassent guère les 6000 blocs de terre cuite par mois).

- l'absence de garantie sur la qualité et la durabilité des produits commercialisés;
- l'inexistence d'entreprises bien structurées spécialisées dans les produits de terre;
- la confusion observée dans le fonctionnement de la filière. Les producteurs sont en même temps les exploitants des carrières pour produits de terre (métiers qui exigent des moyens financiers et techniques solides).

V.7.4 Les atouts des produits de terre

Les produits de terre présentent pourtant les atouts suivants:

- leur niveau de prix est bas et varie très peu en fonction des Régions;
- ils sont adaptés au climat tropical du Cameroun du fait de leur inertie thermique;
- la matière première utilisée est locale et par conséquent leur prix échappent aux

aléas du marché international;

 cependant la technologie de la terre cuite doit être encore développée afin de fabriquer au Cameroun toute la gamme des produits de cette sous filière.

V.8 • • Autres matériaux pour couvertures

V.8.1 Les tôles en Aluminium

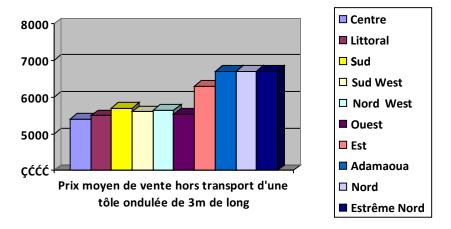
V.8.1.1 Etat des lieux et coûts

La tôle d'aluminium est le matériau incontesté de la toiture au Cameroun. Elle semble ne pas avoir de concurrence en termes de rapport qualité/prix, de longévité et d'entretien. Sa longévité est garantie 10 ans minimum. Toutefois, si elle est correctement mise en œuvre et entretenue, sa durée de vie peut dépasser les 30ans. Sa résistance aux efforts mécaniques est intéressante et la gamme des coloris proposé est étendue.

Les principaux inconvénients de ce matériau sont .

- le bruit engendré par les impacts des gouttelettes d'eau des pluies et leur écoulement sur la toiture est très gênante pour les occupants;
- · la conductivité thermique de ce matériau

est telle que sous une toiture en tôle; il est impératif d'utiliser d'autres matériaux pour garantir l'isolation thermique et phonique, ce qui renchérit le prix de revient de la couverture.


Les plaques de tôles en Aluminium sont fournies aux groupes : TAC, SOCATRAL, SOFAMAC, ACIERIES du CAMEROUN, SCDM, CMC, TPM, AFRIK METAL SERVICES par la société ALUCAM basée à Edéa. Ces plaques sont transformées en tôles ondulées, en tôles tuiles, en tôles bacs, Alu zinc, galvanisées laquées ou pré peintes. Ces produits sont acheminés par les voies ferroviaires ou routières par les grands groupes de distribution qui les vendent aux consommateurs. Les tôles d'aluminium achetées sont acheminées par camions vers le chantier du client. La production de la tôle pour toitures au Cameroun dépasse les 100 000 tonnes par an.

Les caractéristiques physiques et mécaniques des tôles d'aluminium sont résumées par le Tableau 30 et le prix de vente moyen hors transport par Région d'une tôle ondulée en aluminium de 3m de longueur est résumé par la Figure 29:

Tableau 30: Caractéristiques physiques et mécaniques moyennes de l'Aluminium

Dilatation	Conductivité	Température	Chaleur	Masse	Pouvoir	Contrainte
thermique	thermique	de fusion	spécifique	volumique	calorifique	de traction
m/m°C	W/m°C	°C	kcal/°C.kg	kg/m3	Mj/kg	MPa
2,31E-05	230	658	0,225	2700	0	7 à 170

Figure 28: Prix moyen de vente hors transport d'une tôle ondulée de 3m en Aluminium.

V.8.2 Matériaux naturels

V.8.2.1 Etat des lieux

Des matériaux naturels peuvent également être utilisés pour la réalisation des couvertures. Nous pensons aux pierres (roches susceptibles d'être débités en plaque appelées lauzes), aux végétaux (les bardeaux de bois, le chaume en tiges de céréales ou en roseaux regroupés en gerbes, les nattes de raphia, sans oublier les tiges de bambou de chine utilisées comme tuile canal, les joncs et les genêts).

Malgré les coûts relativement bas de ces matériaux, ils sont de moins en moins utilisés au Cameroun du fait de leur courte durée de vie et des pathologies qu'elles subissent.

Photo 20: Tiges des bambous de chine

Photo 21: Toiture en paille

V.9 • • Autres matériaux pour maçonneries

V.9.1 Etat des lieux

Les pierres naturelles ou moellons sont également utilisés pour la réalisation des maçonneries. Mais, du fait de leur très faible rendement (moins de 3m² de mur par jour) et parce qu'ils sont très consommatrices des mortiers, ils sont aujourd'hui abandonnées. On préfère les utiliser comme revêtements pour sols ou murs.

V.10 • Les portes et fenêtres

V.10.1 Etat des lieux

Les portes et fenêtres sont réalisées en bois par une multitude de petites menuiseries installées dans tous les chefs-lieux de Département. Ils proposent aux clients des portes en bois massifs, des portes isoplanes en bois. Il existe également sur le marché des portes et fenêtres métalliques, des portes et fenêtres en verre qui sont relativement chers.

Partie VI Transport des matériaux de construction

		-				
Partie \	VI-	 Transport 	des	materiaux	de	construction

Etat des lieux	68
Tarification	68
Choix du mode de tarification	69
Les insufficances de la filière transport	70

Transport des matériaux de construction

VI.1 • • Etat des lieux

Au Cameroun le secteur des transports des personnes et des marchandises est entre les mains des opérateurs du secteur privé. Ils sont en général installés dans les grandes agglomérations, dans les chefs-lieux de Région et de Département. En dehors des grandes sociétés de transport qui sont beaucoup plus concentrées dans les secteurs imports exports et le transit des marchandises, la majorité des sociétés de transport des matériaux de construction fonctionnent de façon artisanale et bien souvent dans l'informel.

Le transport des produits et matériaux de construction des vendeurs vers les clients acheteurs se fait exclusivement par route et le moyen de transport le plus utilisé est le camion. Les enquêtes réalisées auprès des transporteurs

Les enquetes realisees aupres des transporteurs suggèrent deux modes de tarification :

- la tarification du dépôt des matériaux;
- la location à la journée du camion.

Dans les deux modes de tarification il faut distinguer les cas où le point de dépôt se trouve à l'intérieur de l'agglomération du siège du transporteur ou hors agglomération.

VI.2 • Tarification

a) Tarification du dépôt des matériaux

Cette tarification se fait à l'intérieur et dans

la périphérie de l'agglomération où se trouve le siège du transporteur. C'est une tarification au forfait ; le camion et son chauffeur sont mis à la disposition de l'acheteur. Le camion est utilisé pour transporter les matériaux du point d'achat au point de dépôt indiqué par le client.

Le Coût du dépôt ($C_{depôt}$) est un Forfait (F) qui dépend de:

- la Région (R) et de la Ville (V) où est installé le transporteur;
- l'état ou du Niveau de Service (NS) de ses infrastructures routières, du Tonnage (T) des matériaux à transporter, de la consommation Conso) de carburant pendant le voyage aller et retour du véhicule qui est fonction de la distance parcourue 2d.

$$C_{depot} = F(R, V, T, NS) + Conso(2d, V; NS)$$

b) Tarification de la location du Camion

La location du Camion se fait à la journée.

Le transport des matériaux se fait d'un point d'achat vers un site préalablement indiqué par l'acquéreur. Le camion pouvant faire navettes.

En plus des 4 paramètres cités plus haut, le Coût de la location Journalière ($CJ_{location}$) dépend: de l'accessibilité de la zone de débardage (degré d'enclavement de la zone de dépot Enc).

$$Cj_{location} = FJ(R, V, T, Enc, NS) + Conso(2d, V; NS, Enc) + frais$$

Le volume de carburant consommé pour

effectuer la livraison peut être estimé à priori en utilisant les relations empiriques proposées dans le volume 7 de HDM4 (de la page 107 à 127). Le volume du carburant consommé multiplié par le prix unitaire du carburant donne la fonction *Conso (2d, V; NS, Enc)*

Quel que soit le mode de tarification choisi, le client doit supporter non seulement le coût du carburant nécessaire pour effectuer la livraison(voyage allé et retour) et les coûts liés au chargement et éventuellement au déchargement des matériaux, mais aussi les coûts liés au péage routier et autres dépenses imprévues.

construction (Tableau 31), il ressort que les coûts de transport varient en fonction des Régions. Toutefois, lorsque le point de dépôt des matériaux se trouve à l'intérieur de sa région ou à la périphérie de l'agglomération abritant le siège du transporteur, le client a le choix entre deux modes de tarification : la tarification au dépôt ou la tarification à la journée

Toutefois, lorsque le lieu de dépôt des matériaux se trouve en dehors de la base du transporteur, et si le temps mis par le camion pour aller du point de ramassage au site de dépôt excède les 3heures, la location journalière s'appliquent automatiquement.

VI.3 • • Choix du mode de

tarification

A la lumière des informations recueillies auprès des transporteurs de matériaux de

Tableau 31: Tarification moyenne du transport des matériaux de construction

Mode de	Charge utile		Tarifs moye	n(en Fcfa)	
Tarification	du camion	Centre	Littoral	Ouest	Nord
	<8tonnes	30 000	28500	31500	41 400
Un Depôt	8-15 tonnes	40 000	38000	42000	55 200
	16-25 tonnes	50 000	47500	52500	69 000
Location	<8tonnes	50 000	47500	52500	69 000
journalière	8-15 tonnes	80 000	76000	84000	110 400
en zone	16-25 tonnes	140 000	133000	147000	193 200
Location	<8tonnes	80 000	76000	84000	110 400
journalière	8-15 tonnes	110 000	104500	115500	151 800
hors zone	16-25 tonnes	180 000	171000	189000	248 400

VI.4 • • Les insuffisances de la filière des transports

Les lacunes de la filière transport des matériaux de construction sont de plusieurs ordres:

- la base des transporteurs se trouvent généralement dans les chefs lieux de département;
- le parc automobile est constitué de véhicules de seconde et troisième main

souvent mal entretenus;

- le coût de la location est très souvent fantaisiste;
- les utilisateurs dont les chantiers sont situés hors des chefs-lieux de Département consacrent d'énormes sommes d'argent pour le transport des matériaux de construction (les frais liés au transport de matériaux de construction dépassent parfois le million de FCFA).

Partie VII Les installations sanitaires

Partie V - Inventaire des matières premières pour la constr	uction
Etat des lieux	72
Alternative	72

Les installations sanitaires

Les installations sanitaires doivent répondre simultanément à trois principaux objectifs, chacun faisant appel à des solutions techniques et financières bien différenciées :

- améliorer les conditions sanitaires des ménages grâce à un maillon amont d'installations de collecte des eaux vannes et eau usées. C'est tout simplement une question d'hygiène domestique;
- améliorer la salubrité des quartiers : c'est le maillon intermédiaire d'évacuation des résidus non traités (eaux usées, produit de vidange) qui répond aux exigences d'hygiène urbaine;
- éviter la dégradation de l'environnement : c'est le maillon aval de l'épuration des produits évacués des quartiers qui répond a u x q u e s t i o n s d'h y g i è n e d e l'environnement.

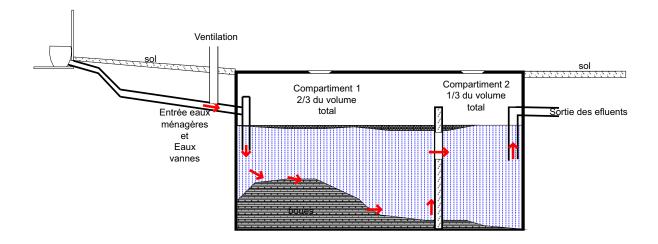
VII.1 • • Etats des lieux

Dans le cadre de ces états des lieux on va tout simplement s'intéresser au premier maillon: celui des installations de collecte des eaux vannes et eaux usées.

En zone urbaine, dans les quartiers résidentiels, le système de collecte des eaux usées est collectif pour les immeubles(les eaux usées et les eaux vannes sont dirigées vers la station de traitement), et individuel pour les résidences privées (les eaux vannes et eaux usées sont dirigées vers les fosses septiques qui

sont vidangés périodiquement).

En zone rurale le système d'assainissement utilisé est des plus sommaires : les eaux usées sont tout simplement versées dans la nature et les excréta recueillis dans les fosses d'aisance, les latrines améliorés à fosse ventilée.


Dans la périphérie des zones urbaines ou l'habitat est spontané le système d'assainissement peut en fonction des moyens financiers des ménages : être sommaire (comme en zone rurale) ou individuel (comme dans les résidences en zone urbaine).

VII.2 • • Alternative

Pour des ménages à revenu modeste, le système d'assainissement le plus approprié est celui d'une toilette à Chasse Manuelle(TMC) reliée à une fosse septique par l'intermédiaire d'un siphon qui tient lieu de joint d'étanchéité contre les odeurs.

Une TMC Marechal C. 1996 (Figure 29), se compose d'une cuvette et d'un siphon installés dans la superstructure(ou éventuellement sur la latrine). Le siphon est relié à une fosse septique par une conduite. L'eau versée dans la cuvette chasse les excréta vers la fosse septique toutes eaux. Du fait des boues accumulées au fond de la fosse, elle doit être vidangée tous les 3 ou 4ans.

Figure 29: Principe de fonctionnement d'une toilette à chasse d'eau Manuelle

Partie VIII Les produits courants et leurs substituts

Partie V - Les produits courants et leurs substituts

Les produits courants et leurs substituts

L'analyse anthropologique de l'habitat au Cameroun, montre que l'architecture vernaculaire ou traditionnelle a subi de profondes mutations. Sous l'effet des technologies diffusées par le brassage des populations, les méthodes traditionnelles de construction ont été abandonnées au profit des techniques modernes:

- les couvertures en chaume ou en nattes de raphia sont remplacées par la tôle en aluminium;
- · les murs en terre battue ou en terre

paille sont remplacés par les agglomérés de ciment.

De plus avec les méthodes modernes, la règle d'or des techniques traditionnelles qui consistait à utiliser les matériaux constitutifs de son environnement immédiat pour construire son logement n'est plus respectée. Les matériaux sont importés; il en résulte un renchérissement des coûts.

Tableau 32: Produits d'usage courant et leurs substituts

	PRODUITS D'USAGE	SUBSTITUTS	
OUVRAGES	COURANT		
	Béton armé	Micro -béton armé	
FONDATIONS	parpaings de 20 bourrés	Blocs de mortier de ciment	
	Mortier de ciment	Mortier de ciment	
	Moellons en pierre naturelle	Moellons en pierre naturelle	
		Fondation sur pieux en bois	
		Mortier de terre ciment	
	Béton Armé	Micro -béton armé	
POTEAUX		Blocs d'angle	
POUTRES	bois	Bois	
LINTEAUX		Mortiers	
		Blocs linteaux	
	Parpaings de 15 et 10	Parpaings de 10	
		Blocs de terre crue, cuite, stabilisée	
		Béton de copeau	
MURS		Pisé	
	Mortier de ciment	Mortier de Ciment	
		Mortier de terre ciment	
	Gobetis	Gobetis	
ENDUITS			
MURS		Badigeons pour murs en terre	
	Carreaux céramiques	Briques de terre cuite	
		Bois	
		Tuiles de terre cuite	
COUVERTURE	Tôles d'Aluminium	Tôles d'aluminium+isolant naturel	
		Tuile de ciment	
		Bardeau de bois	
	Laine de verre	Copeaux de bois	
ISOLANTS	polystyrène	chaumes, pailles,,,,,	
		Fibre des noix de coco	
		cellulose	
	Hérisson	Hérisson	
SOLS	Chape	gros béton	
		pavés en pierre, en brique cuite,	
	Carreaux céramiques	pavés en béton, en bois	
	Contre plaqué, bois	contre plaqué, bois	
PLAFONDS		paille, natte	

PARTIE VIII

Les produits courants et leurs substituts

Dans l'inventaire des produits d'usage courant qui est réalisé ici (Tableau 32), nous proposons des substituts qui respectent cette règle d'or. En examinant attentivement le Tableau 32 qui nous donne pour chaque type d'ouvrage, les matériaux courants et leurs substituts. On remarquera par exemple que:

- le Béton Armé (matériau courant) peut être remplacé par le Micro-Béton Armé (un substitut) dans les zones où il n'y a pas des graviers. Les fers à béton facilement transportables n'ont pas des substituts;
- la tôle en aluminium (produit courant) peut être remplacée par la tôle en aluminium + isolant naturel (substitut) dans les zones soudano sahéliennes où l'on trouve beaucoup de chaume qui peut être utilisée pour la fabrication d'isolant naturel.

Partie IXConclusions

Partie VIII - Conclusions

Conclusions

A ce stade de l'étude et sous réserve de changements ultérieurs, on peut tirer les conclusions suivantes :

le Cameroun regorge des matières premières qui peuvent être utilisées pour la fabrication et la production des matériaux de construction. Mais leur exploitation reste encore timide.

La distribution géographique des carrières pour granulats est inégale et l'exploitation du sable reste artisanale. Ce qui a pour conséquence le renchérissement des prix de vente hors transport de ces matériaux dans le secteur formel.

La filière ciment souffre du monopôle et de la non diversité de l'offre : monopôle parce qu'il y a un seul producteur local de ciment et que le secteur de distribution est contrôlé par trois entreprises. La non diversité de l'offre parce que le marché ne propose que 4 types de produit : les ciments camerounais, chinois, coréen et turque.

La filière de production des agglomérés de ciment semble boostée par la persistance d'une demande en constante progression. Mais, malgré l'existence de nombreux produits de qualité médiocre qui inondent le marché, une PME fabricant des produits conformes aux normes et proposant aux acheteurs des garanties de qualité est en train de lever le défi.

La filière des produits de terre souffre du manque de confiance des utilisateurs. Il en résulte que la faible demande de ce matériau est très faible. Mais, la persistance sur le marché de produits de mauvaise qualité n'entame en rien le potentiel de ce produit du fait que son prix de vente hors transport est faible et pratiquement le même dans toutes les Régions.

La tôle en aluminium reste le maître incontesté de la toiture au Cameroun sans doute à cause de sa longévité et de ses caractéristiques mécaniques le climat tropical.

La filière du transport des matériaux de construction est entièrement sous le contrôle des transporteurs amateurs. Son parc automobile très limité est constitué de camions de seconde ou troisième main. Cette filière contribue au renchérissement des coûts des matériaux de construction.

Partie X Bibliographie

Partie X - Bibliographie

Bibliographie

- 1 ACCETTA André et PERRET Yves(1988), Développement de la filière terre au Cameroun. Ecole Nationale polytechnique de Yaoundé. Rapport final juin 1988.
- BAKEHE A. F.(2004), Etude de quelques propriétés des produits de dragage du Port Autonome de Douala. Mémoire de fin d'étude en vue de l'obtention du diplôme d'Ingénieur de Conception de l'Ecole Nationale Supérieure Polytechnique. 07 septembre 2004
- BESSOLES B(1980), et Trompette R., Géologie de l'Afrique ; la chaine panafricaine zone mobile d'Afrique centrale (partie sud) et zone mobile soudanaise, mémoire du BRGM, N°92 1980.
- 4 BRIC(2009), Caractéristiques » des produits commercialisés par BRIC. Juin 2009
- 5 CCC (2006), Toitures, Maçonnerie 1,2 et 3.Collection Concevoir et Construire 2006
- 6 COUASNET YVEN(2007), Propriétés et caractéristiques des matériaux de construction, référentiel normatifs européen et internationaux, critères de classement des performances. Edition le Moniteur 2ième édition 2007.
- 7 CREUSE Michel(1997), Construction

- des bâtiments gros œuvre. Edition Delagrave 1997
- 8 DESTRAC J.M (2005), Enveloppe du bâtiment ». Mémotech. Edition Casteilla 2005
- 9 DSCE: Document de Stratégie pour la croissance et l'Emploi 2010-2020. République du Cameroun
- DUMORT J. C.(1968), Notice explicative sur la feuille Douala OUEST (levée 1962 à 1965). Echelle 1/500 000, BRGM 1968. République Fédérale du Cameroun.
- 11 ENSP- LGM (2007), Bases des Données sur les caractéristiques physiques et mécaniques de quelques matériaux de construction au Cameroun. Département de Génie Civil de l'Ecole Nationale Supérieure Polytechnique de Yaoundé. Septembre 2007
- 12 ENSP-LMS (2007), Base des données sur les caractéristiques physiques et mécaniques de quelques bois commercialisés au Cameroun. Laboratoire de Mécanique et Structure de l'Ecole Nationale Supérieure Polytechnique de Yaoundé. Septembre 2007.
- 13 FBB (2005), Fédération Belge de la Brique : Manuel de terre cuite 2005
- 14 FRANCEY R. R, Pickford J, Reed, R.(1992) « Guide de l'assainissement individuel ». OMS, 258p réf ISBN : 92-4-25443-4

- 16 GRET(1985), « Dossier N°6 le point sur briques et tuiles ». Groupes de Recherche et d'Echange Technologiques. 1985
- 17 GUIDE CDE(2000), Blocs de terre comprimée : procédures d'essais. Coédition 2000 CDE, ENTPE et CRATerre-EAGISN-906901-27-X
- 18 GUIDE CDI(1998), Blocs de terre comprimée, normes coédition 1998CDI et CRATerre-EAG ISN -906901-18-0
- 19 KOMAR A(1976), Matériaux et élément de construction. Quatrième édition 1976. Edition MIR Moscou.
- 20 Kuisso Pokam Bertille (2003), Caractéristiques et commercialisation des produits de BRIC dans la ville de Yaoundé. Mémoire du Diplôme d'Etude Supérieures Spécialisées en Chimie Industrielle option Céramique et Verre de l'Université de Yaoundé I;
- 21 MAMBA M. EMEYENE A(2009), Quelques caractéristiques mécaniques des fers à béton vendus au Cameroun. Rapport du Laboratoire de Géotechnique et Matériaux de l'Ecole Nationale Supérieure Polytechnique de Yaoundé. Juin 2009.
- 22 MAMBA M, et NGIEMA E. P., BAKEHE A. F.(2007), Etude des sables de dragage du Port Autonome de Douala. Acte du 14 ème Congrès Régional Africain de Mécanique des Sols et de la Géotechnique du 26-28 nov.2007 à Yaoundé, pp.129-134

- 23 MARECHAL Caroline (1996) « Procédés d'assainissement autonome au Cameroun ». rapport de stage à l'ENSP. septembre 1996.
- 24 MINIMIDT(2009), les concessions permanentes d'exploitation des carrières. Ministère de l'Industrie des Mines et du Développement Technologique. Septembre 2009.
- 25 SNFLSC(2010), Stratégie Nationale de Financement du logement Social au Cameroun. Etat des lieux du logement social au Cameroun. MINDUH Février 2010.
- 26 SDSUC, (2011), Stratégie de Développement du sous-secteur Urbain au Cameroun. Rapport final Août 2011.
- 27 SIGG Jean(1991), Produits de terre cuite: matières premières, fabrication, caractéristiques application. Editions Septima 1991.
- TSOMGNE I.(1999), Maison terre bois à structure améliorée, construction d'un prototype et étude du confort thermique.

 Mémoire de Fin d'Etudes d'Ingénieur,
 Ecole Nationale Supérieure
 Polytechnique de Yaoundé. Juin 1999.
- VANTROYS M.(1978), Manuel sur l'habitat économique : contribution au problème de construction au Cameroun. Ministère de l'Equipement de l'habitat et des domaines, Direction de la Construction, laboratoire des Travaux Publics du Cameroun.
- 30 WAGNER E,G LANOIR J. N(1960) : «
 Evacuation des excréta dans les zones

- rurales et les petites agglomérations. » OMS1960 réf –Série OMS monographie N°39
- 31 Web.worldbank.org\...\O, ,menu PK:
- 32 ZANFAC(1999), Hugues Armand « Etude des caractéristiques physiques et mécaniques des tuiles fabriqués au Cameroun. Mémoire d'obtention du
- diplôme d'ingénieur génie civil de l'ENSP juin 1999
- 3^{ième} RGPH(2011), troisième 33 Recensement Général de la Population et de l'Habitat du Cameroun. BUCREP 2011

Partie XI Annexes

Partie XI -Annexes

Annexes

		ANNEXE A1			
Та	Tableau A1: Entreprises du secteur métallurgique(aciers et aluminium)				
		juin-09			
N°	ENTREPRISES	Adresses et Contacts			
1	ACIERIES du CAMEROUN	BP 5422 Douala. Tél:33 40 77 16			
2	AFRIK METAL SERVICES	BP 15141 Douala. Tél:33 43 07 86			
3	ALUCAM	BP 1090 Douala Tél:33 42 89 69			
4	BOCOM	BP 9546 Douala. Tél:33 39 16 16			
5	CALPROD	BP 6141 Douala. Tél:33 47 33 11			
6	CIMENCAM	BP 1323 Douala. Tél: 33 3797 69			
7	CMC	BP 2854 Douala. Tél:33 37 40 87			
8	SCDM	BP 706 Douala. Tél:33 42 25 75			
9	SOCATRAL	BP 1090 Douala. Tél:33 42 37 53			
10	SOFAMAC	BP 57 Soa Yaoundé. Tél:22 21 34 16			

Tableau A2: Entreprises ou Unités exerçant dans le secteur des Matériaux Locaux (juin 2009)

REGIONS	ENTREP RISES	
	ARTER Sarl	Tél: 22317073
	Alpha Technologies	BP 1130 Tél:77742337
	PROMOBAT Sarl	tél:22206750
CEN TRE	TRALOMAT	Tél:77 139787
	Unité BTC	Tél:74700687
	CDEO	
	CBC Building	BP14352 Tél:77771041
	Metro Bond Construction	BP 3334 Tél: 22228454
	METRO Tuiles	
	Unité Tsala Messi	Monatélé
	Unité Tuile Monatélé	Tél: 77 674970
	Lucie Briqueterie	
	Powercem technologie	
	KPI Sarl	
	Geo Sarl	
	CONSTRUCTI QUE Cameroun	tél 99842746
	Tuilerie de Bonamousadi	Bp 2584 Douala
LITTORA L	Société coopérative immobilière du Cameroun	Bp 740 Douala 77603115
	Buiding and Roofing Industry of Cameroun (BRIC)	Tél:33391778
	Ets GIR Sarl	tél;996477286
SUD OUEST	Ngute and Sons LTd	Bongongo I
	Carreau Granito	GTHS Kumba
	Aurora Building Materials	Po box 900 ,Tél 77795943
	Sir Lander tie Indus	Kumbo, tél 77881193
Nord Ouest	Bah Oliver Keming	Bambui, tél:75116653
tora Gaest	Creacons	Mankon, tél:99188976
	Cotecc	Bafut tél:751202311
	FUNDAMENTAL PRODUCT FURNISHER	Bp 2199 bamenda tél:3362
	MUNGO COMPRESS RESEARCH CENTER	tél 33363588
	NDO &SONS MARBRE PRODUCTION	Tarinkon
	CHINJE &SONS	Santa Tel:74293611
	PEOPLE CONSTRUCTION INDUSTRY	34114 161.74233011
	BRICNKA (Bafang)	BP37 Tél:44482248
	BRIQUETRIE LAMARF (Foumban)	Tél:44482248
	BRI QUETERI E FOTETS A (Dshang)	BP 22
	BRIQUETERIE KAMGA & FILS(Bafoussam)	BP 782 Tél:44442319
OUEST	ETS TCHO ULENG (Dschang)	Tél:4485092
OOLST	ETS SIGNING & FILS (Dschang)	BP22 Tél:44451061
	MEILLEURE PRODUCTION DE L'OUEST	face CIPRE
	SERCA A DE	BP 123 tél:77342551
TCT .		BP 123 tel.//342331
EST	PLAN INTERNATINAL BERTO UA	DD 500 T/L77607102
	GIC SA CAJO	BP 509 Tél:77697192
A D A A A A C : : A	CTA Ngaoundéré	T /1 7704043
ADAMAOUA	BRIQUETRIE DE L'UNIVERSITE	Tél:7784013
NORD	CTA GA ROUA	
	PREFAFEN (Garoua)	BP 460;Tél: 99855567
	BRI QUETERI E(Kaélé)	BP 17
EXTREME NORD	CENTRE DE TECHN OLOGIE APPROPRIEE(CTA)	BP 460 Tél:22293335
	BRI QUETERI E AZANA (Maroua)	BP123

Annexe A3: Coûts unitaire des matériaux de construction hors transport par Région(Juin 2009)

Designation		PU	PU	PU	PU	PU
des matériaux	Unité	Douala	Yaoundé	Ebolowa	Buea	Bamenda
Ciment CimeCam CP J 35	sac de 50kg	4750	4960	5750	5060	5450
Ciment importé	sac de 50kg	5190	5195	5950	5520	5795
Ciment CimeCam CP J 35	1T	95000	99200	115000	101200	107000
Ciment importé	1T	103800				
Chaux	15kg	4100	4800	4510		4500
Plâtre	40kg	11500	11200			-
Acier HA12	u	6700	5500	6600	7150	5850
Acier HA10	u	4475	3825	4700		3700
Acier HA8	u	2775	2800	2750		2400
Acier HA6	u	1210	1000			
Fer d'Attache(50m)	1rouleau	1100	1900			
, ,	1TOUIEAU	1100	7500		1200	16250
Gros Sable	1T	4000	7500		4240	-
		3500		5000		
Sable fin	1T					-
Gravier 5/15	1T	15500	15000			
Gravier 15/25	1T	14500	14000	24000		
Pouzzolanes	1T	4800			5120	
Sable de Carrière	1T	9500				
Parpaings 20	u	325	350			
Parpaings 15	u	225	250			-
Parpaings 10	u	190	220	250		240
Hourdis	u	400	430	460	410	450
Briques Cuites 29 x14,5x8	u	200	200	180	180	175
Briquettes cuites 21x10x5	u	125	125	100	100	95
Plauette de terre Cuite 21 x10 x4	u	70	70	60	60	60
Blocs de terre crue 29 x14x10	u	55	55	55	55	55
Tôles Alu ondulée 3m	u	5500	5450	5700	5600	5650
Tôles Faîtière	ml	1600	1650	1800	1700	1750
tôles bacs 5/10 longueur 6ml	u	18750	19250	18000	19900	16797
tôles bacs 6/10 longueur 6m	u	21050	21180	22900	23150	21785,2
Tuile en vibrociment	m2	3600	3800			
Tuiles double roman	m2	7400	8140		7950	
Tuile faîtière	ml	4800	5280		5130	
Tuile de rive	ml	4500	4950		4770	
Tôles Tuiles	m2					
Plaquettes en terre Cuite 22x11x3	u	60	60		60	
Carreaux de faïence	1m2	4000	4250	6000	4240	4470
Grès Cérame sol	1m2	8200	10560	15000	8720	11080
Pavés	1m2	4900	5000			
Sanitaire	u	45000	45000			
Pot de toillette en BA	u	12000	13000			
Evier alu	u	11650	14500			
Evier Céramique	u	22000	22000			
Buanderie en BA	u	18200	20000			
Fourreau (gaine orange)	1 rouleau	6000	6500			
Porte isoplane	u	25000	25000			
•	+	15000	15000			
Fenêtre	u 					
Pantex 900	u	57500	52575			
Pantex 800	u 2	41000	36975			
bois de coffrage	m3	62000	60000			80494
bois de charpente	m3	96000	95000			
Vernis bois copal	51	13700	14600			
Xylamon	51	2500	3450			
Moellon	1T	7900	7520	9150	8690	6750

	Désignation		PU	PU	PU
•	des matériaux	Unité	Sud Ouest	Nord Ouest	Ouest
1	Cime nt Cime Cam CPJ 35	sac de 50kg	5060	5450	52
	Cime nt i mp orté	sac de 50kg	5520	5795	56
3	Cime nt Cime Cam CPJ 35	1T	101200	107000	1050
4	Cime nt i mp orté	1T	110400	115900	1138
5	Cha ux	15kg	4360	4500	4
6	Plâtre	40kg	12220	1280	12
7	Acier HA12	u	7150	5850	5
8	Acier HA10	u	4810	3700	3
9	Acier HA8	u	3000	2400	2
10	Acier HA6	u	1300	1180	1
11	Fer d'Atta che (50m)	1rouleau	1200	2070	2
	Sable Sanaga	1T			16
	Gros Sable	1T	4240	7400	
14	Sable fin	1T	3710	5350	5
15	Gravier 5/15	1T	16430	17870	17
	Gravier 15/25	1T	15370	15300	
	Pouzzol anes	1T	5120		10
_	Sable de Carrière	1T	10070	16350	
	Parpaings 20	u	330	370	
	Parpaings 15	u	230	270	
	Parpaings 10	u	200	240	
	Hourdis	u	410	450	
	Briques Cuites 29 x14,5x8	u	180	175	
	Briquettes cuites 21x10x5	u	100	95	
	Plauette de terre Cuite 21 x10 x4	u	60	60	
	Blocs de terre crue 29 x14x10	u	55	55	
	Tôles Alu on dulée 3m	u	5600	5650	-
	Tôles Faîtière	ml	1700	1750	+
	tôles bacs 5/10 longue ur 6ml	u	19900	16797	
	tôles bacs 6/10 longueur 6m	u	23150	21785,2	-
	Tuile en vibrociment na ture	m2	3800	3850	
_	Tuiles double roman		7950	3630	
	Tuile faîtière	m2 ml	5130		
_			1		
	Tuile de rive	ml 	4770 60	60	
	Plaquettes en terre Cuite 22x11x3	u 1 2			
_	Carreaux de faïence	1m2	4240	4470	1
	Grès Cérame sol	1m2	8720	11080	
	Pavés	1m2	5250	5250	
	Sanitaire	u 	49500		
	Pot de toillette en BA	u	12720	13650	
_	Evieralu	u	12800	15225	
	Evier Céramique	u	24200	23100	
	Buanderie en BA	u	19350	21000	
	Fourreau (gaine orange)	1 rouleau	6360	6825	1
	Porte isoplane	u	27500		
	Fe nê tre	u	16500		
	Pante x 1300	u	60950	55200	
	Pante x 800	u	43460	38820	1
	bois de coffrage	m3	78880		1
	bois de charpente	m3	100280	105950	
	Vernis bois copal	51	14500	15330	
	Xylamon	51	2650	3620	1
52	moellon	lt	5530	5450	

Annexe A5: Coûts unitaire des matériaux de construction hors transport par région (juin 2009)

	Désignation		PU	PU	PU	PU
N°	des matériaux	Unité	Est	Adamaoua	Nord	Extrême Nord
1	Ciment CimeCa m CPJ 35	sac de 50kg	6070	6450	6450	6500
2	Ciment importé	sac de 50kg	7940	8430	8430	8500
3	Ciment CimeCa m CPJ 35	1T	121400	128930	128930	130000
4	Ciment importé	1T	158800	168590	168590	170000
	Chaux	15kg	5840	6200	6200	6500
	Plâtre	40kg	13000	13800	13800	13960
7	Acier HA12	u	6100	6400	6400	7000
8	Acier HA10	u	4150	4370	4370	5500
9	Acier HA8	u	2600	2750	2750	3500
10	Acier HA6	u	1250	1300	1300	2000
11	Fer d'Attache(50m)	1roulea u	1700	1750	1750	1800
12	Sable Sanaga	1T				
	Gros Sable	1T	6350	1430	1430	1430
14	Sable fin	1T	2350	1430	1430	1430
15	Gravier 5/15	1T	16000	14000	14000	14000
	Gravier 15/25	1T	16000	14000	14000	14000
	Pouzzola nes	1T				
	Sable de Carrière	1T				
	Parpaings 20	u	410	425	425	425
	Parpaings 15	u	310	325	325	325
	Parpaings 10	u	280	295	295	295
	Hourdis	u	490	505	505	505
	Briques Cuites 29 x14,5x8	u	180	170	170	170
	Briquett es cuites 21x10x5	u	110	100	100	100
24	Pla uett e de terre Cuite 21 x10 x4	u	65	60	60	60
25	Blocs de terre crue 29 x14x10	u	55	55	55	55
26	Tôles Alu ondulée 3m	u	6300	6700	7370	8040
27	Tôles Faîtière	ml	1965	2100	2310	2520
28	tôles bacs 5/10 longueur 6ml	u	19080	20290	22320	24348
29	tôles bacs 6/10 longueur 6m	u	24740	26300	28930	31560
30	Tuile en vibrociment na ture	m2				
31	Tuiles double roma n	m2				
32	Tuile faîtière	ml				
33	Tuile de rive	ml				
35	Pla quett es en terre Cuite 22x11x3	u				
36	Carrea ux de faïence	1m2	4920	4950	5225	5500
37	Grès Cérame sol	1m2	12190	7200	7600	8000
38	Pavés	1m2	5750	4950	5225	5500
39	Sanita ire	u	51785	43830	46265	48700
40	Pot de toillett e en BA	u	11500	13365	14110	14850
41	Evier alu	u	15525	14400	15200	16000
42	Evier Céra mique	u	25320	23040	24320	25600
	Buanderie en BA	u	25300	23400	24700	26000
44	Fourrea u (gaine ora nge)	1 roulea u	9200	7360	7820	7980
45	Porte is opla ne	u	28780	30000	30000	30000
46	Fenêtre	u	17280	18250	18250	18250
47	Pantex 1300	u	62675	60250	60250	60250
48	Pantex 800	u	46635	44520	44520	44520
49	bois de coffrage	m3	87460	96210	99710	102450
50	bois de charpente	m3	99260	113520	121780	130080
51	Vernis bois copal	51	16675	15450	15675	15800
52	Xyla mon	51	4025	3500	3600	3800
	moellon	t	8450	7850	9720	9720

1-

SECTEUR D'ACTIVITE

Fiche 1: Entreprises, exploitants des matières premières et de fabrication des matériaux de construction

		Formel		Informel
;	2- Matières Premières	exploitées ou ma	tériaux fabriqu	és
N ⁰	Désignation du Produit	Capacité de annuelle	productionPri	x de vente Unitaire
1				
2				
3				
4				
5				
6				
7				
;	3- Mode de transport utilise		produits vers les oviaire	s centres de distribution Aérien
2	1- Mode de transport utilisé Route		produits vers les	s sites des clients Aérien
,	5- Présence dans toutes le Oui * Préciser les Ré	* No	on	* Autres

Fiche 2 : Importateurs des matériaux de construction

	1-	SECTEUR D'ACTI	VITE		
			Formel		Informel
	2-	Matériaux importés	3		
N ⁰	Dés	ignation du Produit	Capacité	d'importati	ion Prix de vente Unitaire
			annuelle		
1					
2					
3					
4					
5					
6					
7					
	3-	Route		Ferroviaire	vers les centres de distribution Aérien vers les sites des clients
	5-	Route Présence dans toutes I	es Régions?	Ferroviaire	Aérien
		Oui		* Non	* Autres
		* Préciser les Ré	egions et localité	35	

Fiche 3: Vendeurs des matériaux de construction

1-	SECTEUR D'ACTIVITE		
	For	mel	Informel
2-	Produits vendus		
N ⁰	Désignation du Produit	Prix de vente Unitaire	7
1			-
2			
3			_
4			_
5			
6			
7			
3-	Mode de transport utilisé po	ur acheminer les produits	vers les centres de distribution
	Route	Ferroviaire	Aérien
4-	Mode de transport utilisé pou	ur acheminer les produits	vers les sites des clients
			Aérien
	Route	Ferroviaire	Action
5-	Présence dans toutes les Re	*	* A tuo a
	Oui	Non	Autres
	* Préciser les Régions	s et localités	

5

6

7

Fiche 4 : Transporteurs des matériaux de construction

1-	SECTEUR D'ACTI	IVIIE	
		Formel	Informel
2-	Véhicules de transp	oort utilisés ont été	achetés:
		Neufs	D'occasion
3-	Tarification en agglo	omération	
N ⁰	Véhicule PTAC	Coûts	
1			
2			
3			
1			

Fiche 5 : Fabricants d'agglomérés de ciment

	1-	SECTEUR D'ACTIVITE
		Formel
N ⁰	Туре	d'agglomérés fabriqués Capacité de production Prix de vente Unitaire mensuelle
1		mensuenc
2		
3		
4		
5		
6		
7		
	2-	Niveau scolaire
		Primaire Secondaire Universitaire
		autres
	3-	Comment avez-vous appris votre métier?
		Dans le tas Au CETIC Autres
	4-	Connaissez vous les méthodes de formulation des bétons ou mortier?
		Oui Non Autres
	5-	Quelle norme que vous utilisez vous?

Fiche 6 : Fabricants d'agglomérés de terre crue ou cuite

	1-	SECTEUR D'ACTIV	'ITE	
			Formel	Informel
N ⁰		d'aggloméré de e fabriqués	Capacité de production mensuelle	Prix de vente Unitaire
1		7 1400		
2				
3				
4				
5				
6				
7				
	2-	Niveau scolaire		
		Primaire	Secondaire	Universitaire
		autres		
	3-	Comment avez-vous ap	pris votre métier?	
		Dans le tas	Au CETIC	Autres
	4-	Connaissez vous les mé	thodes de formulation des ter	res pour produits de terre?
		Oui	Non	Autres
	5-	Quelle norme que vous	s utilisez vous?	