SOMMAIRE

INTRODUCTION	2
I-SYMBOLES ET UNITÉS	2
II. BASES DE CALCUL	4
III. EVALUATION DES CHARGES APPLIQUEES AUX OUVRAGES	7
IV. METHODOLOGIE DE CALCUL	16
V. PREDIMMENSIONNNEMENT	16
V.1 CANIVEAUX	17
V.2 DALOTS	18
V.3-PONTS CADRE ET PORTIQUES	19
VI DIMENSIONNEMENT	25
VI.1 CANIVEAU DE 50X60	25
VI.2 CALCUL DES DALOTS	35
VI.3-PONTS CADRE ET PORTIQUES	306
VII .PLANS D'EXECUTION ET APPAREIL D'APPUI	385

INTRODUCTION

La présente note a pour but l'étude structurale des ouvrages hydrauliques dans le cadre du projet de réhabilitation et de construction de certaines voiries dans la ville de YAOUNDE et SOA se raccordant à la RN1 à OLEMBE.

I-SYMBOLES ET UNITÉS

SYMBOLES	DÉSIGNATIONS	UNITÉS
У	Coefficient de fissuration	Sans
n	Coefficient d'équivalence	Sans
ω	Pourcentage d'armatures	%
	Élancement	Sans
$l_{\rm s}$	Longueur de scellement d'une armature	m
E	Enrobage d'une armature	m
Cg	Dimension du plus gros granulat	m
В	Larguer d'une poutre	m
Н	Hauteur d'une poutre	m
10	Longueur libre	m
l_{f}	Longueur de flambement	m
1	Diamètre des armatures longitudinales	m
t	Diamètre des armatures transversales	m
A_{st}	Aire de section d'armatures tendues	cm ²
A _{sc}	Aire de section d'armature comprimée	cm²
A_1	Aire de section d'armatures supérieures	cm ²
A_2	Aire de section d'armatures inférieure	cm ²
B _r	Aire de section de béton réduit	cm ²
$M_{ m u}$	Moment fléchissant ultime	KN/m

Projet de réhabilitation et de construction de Certaines voiries dans la ville de YAOUNDE et SOA se raccordant à la RN1 à OLEMBE.

M _{ser}	Moment fléchissant de service	KN/m
$N_{\rm u}$	Effort normale ultime	KN
N _{ser}	Effort normale de service	KN
f _{c28}	Résistance caractéristique du béton à la compression à l'âge de 28 jours	MPa
f _{t28}	Résistance caractéristique du béton à la traction à l'âge de 28 jours	MPa
f_{tj}	Résistance caractéristique du béton à la traction à l'âge de « j » jours	MPa
$f_{\rm e}$	Limite élastique des armatures	MPa
$\overline{ au_{\mathrm{s}}}$	Contrainte d'adhérence	MPa
$ au_{ m su}$	Contrainte d'adhérence ultime	MPa
σ _{st} —	Contrainte limite de traction des armatures	MPa
<u>σ_{bc} —</u>	Contrainte limite de compression du béton	MPa
σ_{st}	Contrainte de traction des armatures	MPa
$\sigma_{\rm sc}$	Contrainte de compression des armatures	MPa
σ _{bc}	Contrainte de compression du béton	MPa
f_{bu}	Contrainte de calcul de compression du béton	MPa

II. BASES DE CALCUL

Règlements - Normes

Les calculs sont menés à partir des règles du B.A.E.L. 91 modifié 99.

Les normes de calcul employées sont les suivantes :

Désignation	Norme
CHARGES PERMANENTES	NF P 06 – 004
CHARGES D'EXPLOITATION	NF P 06 - 001
Charges Routière	Fac 61

De ces normes, nous extrayons les valeurs des charges de calcul suivantes :

Charges permanentes:

DÉSIGNATIONS	VALEURS (daN/m²)
Béton armé (daN/m ³)	2500

Charges d'exploitation:

DÉSIGNATIONS	Système
Charges roulantes	B , B , B , M 120
Surcharge	Al (non défavorable)

Caractéristiques des matériaux

Les caractéristiques des matériaux utilisés sont les suivantes :

Acier

Les aciers utilisés seront du type feE 500 pour les HA et f_eE235 pour les RL;

$$\gamma_{\rm s} = 1.15$$
 $\eta = 1.6$;

Projet de réhabilitation et de construction de Certaines voiries dans la ville de YAOUNDE et SOA se raccordant à la RN1 à OLEMBE. $\phi = 1.5$; $\theta = 1$

Béton

$$\bar{\sigma}_S = f = 435M$$

$$f_{c2} = 25 M$$

$$\gamma_b = 1.5$$

$$\bar{\sigma}_b = 0.6 \times f_{c2} = 15 M$$

Sol support

Contrainte admissible à l'ELS: 1,5 bar pour dalots et caniveaux et 3 bars pour les ponts.

Coefficient d'élasticité du sol : 15000 kN/m3

Données diverses

Largeur roulante des dalots Lr=8,5 7m;

Largeur chargeable des dalots Lch=8,5m;

Nombre de voies de circulation Nv= $E(\frac{8.5}{3})$ =2

Ouvrage à classer en pont de première classe

Coefficient bc=1,10 (pour la méthode Bc) et bt = 1 pour le système Bt.

Hypothèse sur les remblais

Pour le calcul des efforts et sollicitations dus aux remblais, nous

Considérons:

un poids spécifique de 2,00t/m3.

Angle de frottement interne :30°

Hauteur du remblai 3m

Poids volumique :20KN/m3

Cohésion négligée:

III. EVALUATION DES CHARGES APPLIQUEES AUX OUVRAGES III.1 CHARGES D'EXPLOITATION

A-SYSTEME A

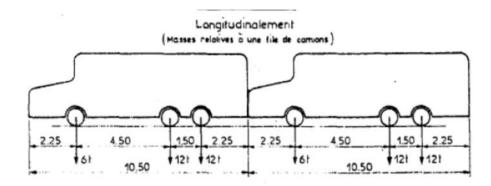
Le système A est une charge uniforme qui modélise l'embouteillage sur toutes les voies de valeur

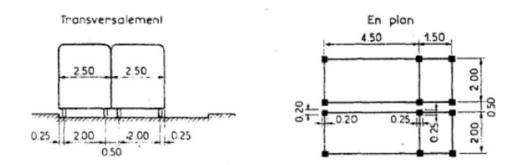
$$A = a_1 \times a_2 \times A(L)$$
 avec $A(L) = 2.3 + \frac{3.6}{L+1} e$ K /m2 L=longueur chargé

$$a_1=1$$
 Pont de première classe à deux voies $a_2=\frac{v_0}{\frac{L\ h}{n}}$

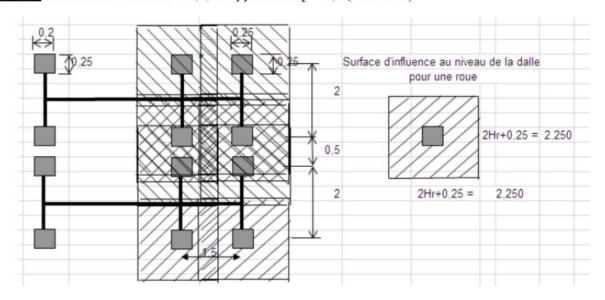
$$l = l\iota$$
 cha éa = 8,5m

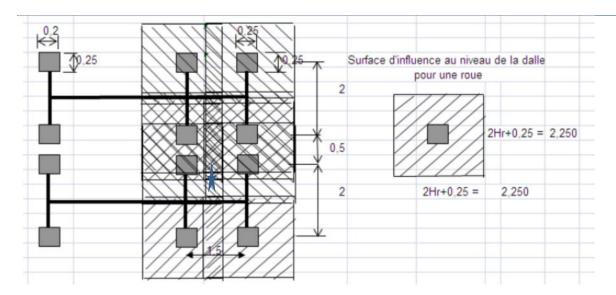
$$v_0 = l\iota$$
 $d'u$ $v = 3.5$ car ponts de 1^{ère} classe;

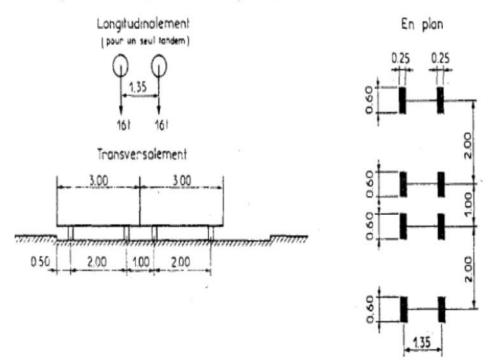

$$n = n\epsilon$$
 $d v = 2;$

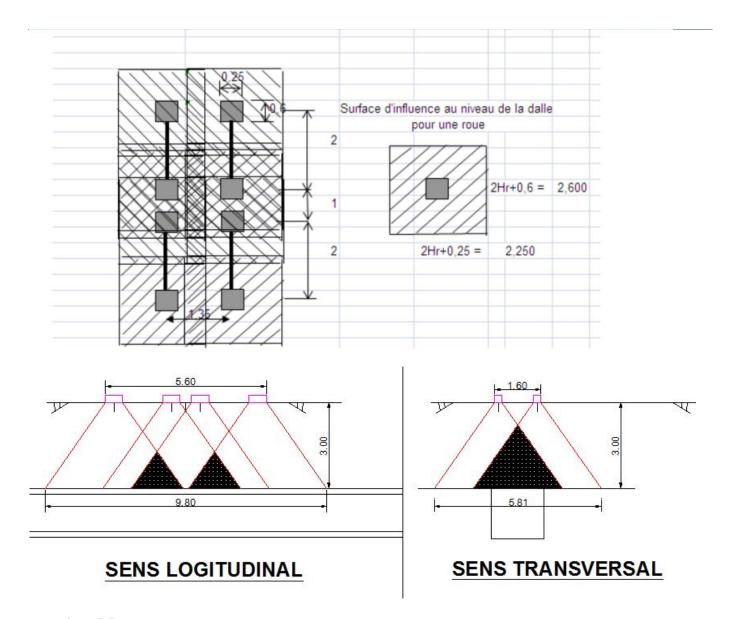

Ainsi
$$a_2 = 0.82$$
 e $A = 0.82 \times A(L)$

La surcharge A étant appliquée sur le remblai , sa surface d'impact au niveau supérieure du tablier est plus grande que la surface du tablier d'où ladite charge sera corrigé par la formule :l/(l+2x3tan30°) On a :


N°	DESIGNATIONS	DIMENSIONS	A(L) (kN/m²)	a1xa2	A (kN/m²)	A corrigé suivant épaisseur remblai (kN/m²)	
01		1X1	2,58	0,82	2,12	0,61	
02		2X1	2,56	0,82	2,1	0,86	
03	DALOT SIMPLE	3X2	2,54	0,82	2,08	1,05	
04		2X1,5	2,56	0,82	2,1	0,86	
05		1,5 X1	2,57	0,82	2,11	0,75	
06		2X1,5X1,5	2,54	0,82	2,08	1,06	
07	DALOT DOUBLE	2X2X1,5	2,53	0,82	2,1	1,20	
08		2X2X3	2,53	0,82	2,1	1,21	

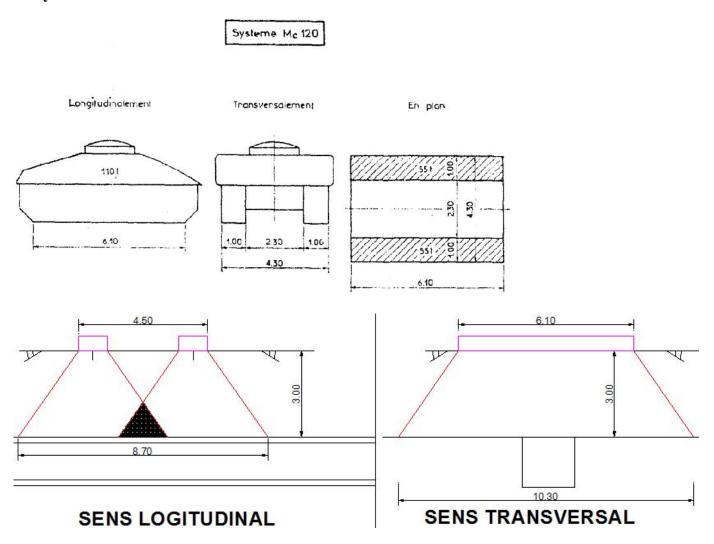

B-SYSTEME BC


 $\underline{\text{Donn\'ees}}: Entraxe\ des\ essieux = 1,5; \textbf{Coefficient}\ \textbf{b}_c = \textbf{1}, \textbf{1}(\textbf{Art}.\,\textbf{5}.\,\textbf{22})$



C-SYSTEME BT

Notre pont étant de première classe, le coefficient $\boldsymbol{b_t} = 1$;



c-système BR

$$10t \quad F(t) = 10t$$

D-Système Mc120

D'après les figures ci-dessus, on constate une répartition non uniforme des charges routières sur le tablier. Etant donné que la réalisation du dalot pourrait faire l'objet de préfabrication dont la longueur pourrait être inférieure à la zone d'influence la plus chargée, nous allons considérer que cette dernière est uniforme sur l'ensemble du dalot.

La charge uniformément repartie correspondante est obtenue par :

$$Q=\Sigma \frac{N.N.r}{S}$$

Avec:

Nl_i= Nombre de roue max i influençant le dalot sur la même zone dans son sens longitudinal;

Nvi= Nombre de roue i influençant le dalot sur la même zone dans son sens transversal;

r_i= Charge de la roue i influençant le dalot ;

S_i= Nombre de roue i influençant le dalot;

N°	DESIGNATIONS	DIMENSIONS	Q(kN/m²)		
			Bc	Bt	Mc120
1		1X1	18,18	22,47	20,54
2		2X1	18,18	22,47	20,54
3	DALOT SIMPLE	3X2	18,18	22,47	20,54
4		2X1,5	18,18	22,47	20,54
5		1,5 X1	18,18	22,47	20,54
6		2X1,5X1,5	18,18	22,47	20,54
7	DALOT DOUBLE	2X2X1,5	18,18	22,47	20,54
8		2X2X3	18,18	22,47	20,54
9	DALOT TRIPLE	3X2X2	18,18	22,47	20,54

E-surcharge sur remblai : MAX (20 ; Q DEFAVORABLE) EN KN/M²

F-surcharge sur trottoir:

Elle est de deux types :

CHARGE SURFACIQUE: 4,5 KN/M²

En prenant en compte sa diffusion à travers le remblai, on obtient Q1tr= $\frac{4,5x2}{2+3t-3}$ = 2,5 kN/m²

Charge roulante : 6t soit 60KN sur une surface d'impact de 0,25x0,25m²

En prenant en compte sa diffusion à travers le remblai, on obtient

$$Q2tr = \frac{6}{4.4 \times 4.4} = 3.02 \text{ kN/m}^2$$

Qtr=max(Q1tr; Q2tr)=3,02 kN/m²

III.2 CHARGES PERMANENTES

a-poussee des terres

Poids volumique: 20kN/m3

Coefficient de poussée Active : 0,33

b- poids propre des elements d'ouvrage

d- GUIDE ROUE:

Hauteur: 1 m;

Poids linéique : 0.2x25x1= 5 kN/m

e- remblai sur chaussee:

La hauteur de remblai :3m;

Poids volumique: 20kN/m3;

Angle de frottement interne : 30°

III.3-. COEFFICIENT DE MAJORATION DYNAMIQUE:

$$\delta = 1 + \frac{0.4}{1 + 0.2L} + \frac{0.6}{1 + 4\frac{G}{Q}}$$

Avec L=Max (Largeur roulable ; portée de la travée)

- G=Poids total d'une section de couverture de longueur L et toute la largeur relative à cette couverture et aux éléments reposant sur elle.
- Q=Poids total maximum des essieux du système (Bc ou Bt) qu'il est possible de placer sur la longueur L.

N°	DESIGNATIONS	DIMENSIONS				
			Вс	Bt	Br	Mc120
1		1X1	1,28	1,32	1,21	1,16
2		2X1	1,32	1,36	1,20	1,17
3	DALOT SIMPLE	3X2	1,25	1,28	1,17	1,16
4		2X1,5	1,31	1,34	1,19	1,16
5		1,5 X1	1,34	1,38	1,20	1,16
6		2X1,5X1,5	1,28	1,31	1,18	1,17
7	DALOT DOUBLE	2X2X1,5	1,27	1,30	1,18	1,17
8		2X2X3	1,23	1,26	1,17	1,16
9	DALOT TRIPLE	3X2X2	1,23	1,26	1,17	1,16

N°	DESIGNATIONS	DIMENSIONS				
			Вс	Bt	Br	Mc120
01		1X1	1,28	1,32	1,21	1,16
02		2X1	1,32	1,36	1,20	1,17
03	DALOT SIMPLE	3X2	1,25	1,28	1,17	1,16
04		2X1,5	1,31	1,34	1,19	1,16
05		1,5 X1	1,34	1,38	1,20	1,16
06		2X1,5X1,5	1,28	1,31	1,18	1,17
07	DALOT DOUBLE	2X2X1,5	1,27	1,30	1,18	1,17
08		2X2X3	1,23	1,26	1,17	1,16
09	DALOT TRIPLE	3X2X2	1,23	1,26	1,17	1,16

III.3-. choix du syteme le plus defavorable :

N °	DESIGNATIONS	DIMENSIONS	O(I(NI/m2)		Coefficient bc xQbcx bc	Coefficient bt xQbtx bt	Qмс120X мс120	
			Вс	Bt	Mc120	Q _{bc} Pondéré	Q _{bt} Pondéré	Q _{Mc120} Pondéré
1		1X1	18,18	22,47	20,54	25,69	29,60	23,85
2		2X1	18,18	22,47	20,54	26,48	30,60	23,96
3	DALOT SIMPLE	3X2	18,18	22,47	20,54	25,00	28,70	23,86
4		2X1,5	18,18	22,47	20,54	26,15	30,19	23,91
5		1,5 X1	18,18	22,47	20,54	26,89	31,11	23,91
6		2X1,5X1,5	18,18	22,47	20,54	25,58	29,45	23,96
7	DALOT DOUBLE	2X2X1,5	18,18	22,47	20,54	25,35	29,15	24,03
8		2X2X3	18,18	22,47	20,54	24,67	28,24	23,88
9	DALOT TRIPLE	3X2X2	18,18	22,47	20,54	24,67	28,24	23,88

Nous constatons que la surcharge routière surfacique la plus défavorable correspond au système Bt. C'est ce dernier qui sera utilisé dans le dimensionnement et même comme surcharge routière étant donné que toutes ces valeurs sont supérieures à $20~\rm kN/m^2$.

IV. METHODOLOGIE DE CALCUL

LA METHODOLOGIE A CONSISTE A LA MODELISATION DE LA STRUCTURE, A L'AFFECTION DES DIFFERENTES CHARGES ET AU DIMENSIONNEMENT GRACE AU LOGICIEL AUTODESK ROBOT STRUCTURAL ANALYSIS PROFESSIONAL 2015.

V. PREDIMMENSIONNNEMENT

TYPOLOGIE DES OUVRAGES

En prenant pour réfèrent les SETRA à travers le livre Pont Cadre et portique, Le choix du type d'ouvrage se fait dans les conditions suivantes :

Les ponts cadres et portiques sont des ouvrages qui conviennent à des portées (ou ouvertures) maximales biaises de l'ordre d'une vingtaine de mètres.

Si le sol de fondation est de bonne qualité, c'est-à-dire admet, sans tassement notable, des pressions supérieures à 300kPa, et peu sensible à l'eau, le portique s'impose lorsque l'ouverture biaise avoisine huit mètres.

Un sol de fondation de qualité moyenne demande un radier jusqu'à une douzaine de mètres d'ouverture et un portique sur pieux pour des ouvertures supérieures.

Ces conditions peuvent être résumées dans le tableau suivant :

Portée biaise	2	8	12	20	
Mauvais sol	← cadre	← cadre ⇒		← portique sur pieux ⇒	
Bon sol	← cadre ⇒	← portique sur semelles ⇒		emelles ⇒	

Tableau 1 :Tableau de choix du type d'ouvrage(SETRA)

Par ailleurs, il y a lieu de prendre en compte certaines contraintes dans la détermination du type d'ouvrage. On peut citer notamment :

Un portique fondé sur semelles superficielles n'est pas adapté en cas de sol affouillable. Un pont cadre (Radier avec bêches) ou un portique sur Pieux conviennent mieux dans ce cas.

Lorsqu'un pont-cadre ou un portique doit supporter une couverture de terre, il convient de majorer l'épaisseur des éléments porteurs en fonction du poids de cette dernière.

Vues ces considérations, avec un module d'élasticité du sol supérieure à 150MPa (fondation en enrochement ou grave latéritique compacté), nous avons deux types d'ouvrages :

Les ponts cadres pour des ouvertures inférieures à 12m;

Les pont-portiques sur semelles pour des ouvertures supérieures de 12 m.

V.1 CANIVEAUX

Deux sections de caniveau (50x60 et 60x80) seront calculées. Les caniveaux de hauteur supérieure à 60 cm auront un ferraillage similaire aux caniveaux de hauteur 80cm et ceux d'épaisseur inférieure à 60 cm auront un ferraillage similaire aux caniveaux de hauteur 60cm.

Epaisseur des parois :20 cm;

Epaisseur de radier :15 cm;

Epaisseur de la dalle de couverture : 20 cm ;

N °	DIMENSIONS	ép piédroit (en cm)	ép Radier (en	ép Dalle de couverture
			cm)	(en cm)
01	50x50	15	15	20
02	50x60	15	15	20
03	60x70	20	20	20
04	60x80	20	20	20

V.2 DALOTS

N °	DESIGNATIONS	DIMENSIONS	ép piédroit (en cm)	ép Radier (en cm)	ép Tablier (en cm)
01		1X1	20	20	20
02		2X1	25	25	25
03	DALOT SIMPLE	3X2	30	45	45
04		2X1,5	25	30	30
05		1,5 X1	25	20	25
06		2X1,5X1,5	25	30	25
07	DALOT DOUBLE	2X2X1,5	25	30	25
08		2X2X3	25	30	30
09	DALOT TRIPLE	3X2X2	25	30	30

V.3-PONTS CADRE ET PORTIQUES

A-PONTS CADRES

Données:

Hauteur intérieure entre la couche de roulement et face intérieure de la dalle = 4,50 m;

Hauteur totale intérieure = 6,00 m;

Largeur intérieure (01 cadre) = 7 m;

Hauteur de remblai maximum : 01 mètre ;

Traverse supérieure :

L'épaisseur de la traverse supérieure peut être déterminée par la formule suivante où " l"

Désigne l'ouverture biaise de l'ouvrage :

$$e = \frac{l}{32} + 0.125 \text{ avec un minimum de } 30 \text{ cm}$$

Piédroits et traverse inférieure :

Les épaisseurs des piédroits et de la traverse inférieure sont donnés par les abaques suivants en fonction de l'ouverture biaise de l'ouvrage et du 'module de pseudo-élasticité du sol : .

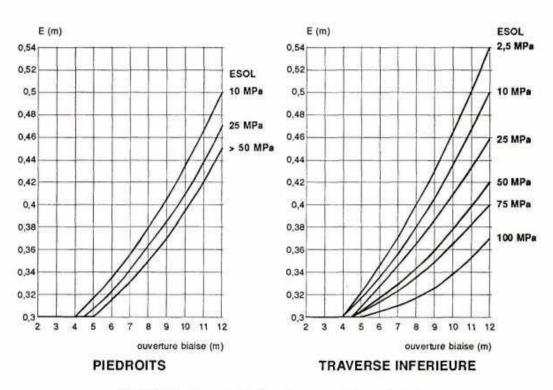


FIGURE 97 : Abaques de dimensionnement des ponts-cadres

Figure 1 : Abaques de pré dimensionnement de piédroits et traverse inférieure de cadres

Ouvrages sous remblai

Les épaisseurs trouvées au moyen des abaques doivent être majoré en fonction de la hauteur de remblais :

$$E_i = E_{i0} \sqrt{1 + \frac{Hd^2}{2000E_{i0}^2}}$$

d: ouverture de l'ouvrage en m

H: hauteur du remblais en m

Résultat du pré-dimensionnement

Les valeurs de pré dimensionnement sont données dans le tableau cidessous :

localisation		tronçon 1	PK 0+00
	unités	avant correction	après correction
ouverture(1)	m	7	7
hauteur intérieure	m	7	7
épaisseur traverse supérieure(Ets)	m	0,34	0,5
épaisseur piédroit(Ep)	m	0,36	0,5
épaisseur traverse inférieure(Eti)	m	0,36	0,5
fiche	m	2	2

B-Pont portique

Pont portique tronçon 4

Données :

Hauteur totale intérieure = 6,00 m;

Largeur intérieure (01 cadre) = 12 m;

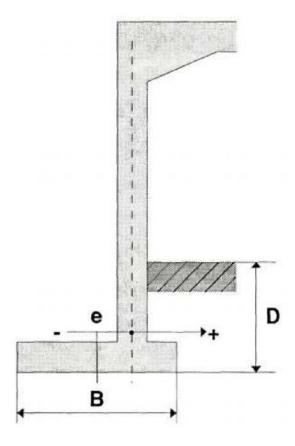
Hauteur de remblai maximum : 01 mètre ;

Traverse supérieure et piédroits :

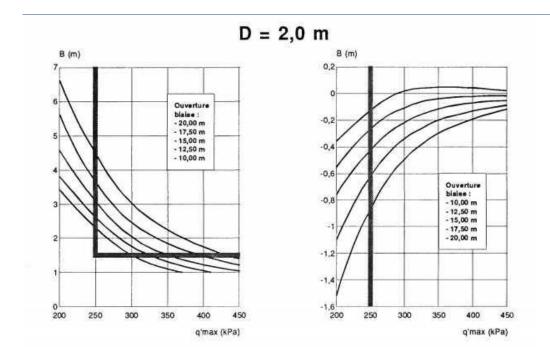
L'épaisseur de la traverse supérieure, ainsi que des piédroits, peut être déterminée par la formule suivante, où "l" désigne l'ouverture biaise de l'ouvrage :

$$E_t = \frac{l}{40} + 0.1 \text{ avec un minimum de } 30 \text{ cm}$$

Semelle


Épaisseur de la semelle

Selon le SETRA, l'épaisseur de la semelle peut être prise égale à celle des piédroits, sans toutefois descendre en dessous de 60 cm.


$$E_s \ge \max(E_p; 60cm)$$

Largeur et excentrement de la semelle

La largeur B et l'excentrement de la semelle sont données à partir des abaques proposés par le SETRA en fonction de de la contrainte admissible du sol q'_{max} , la fiche D d'ancrage de la semelle dans le sol et de l'ouverture du pont portique.

En considérant Une fiche D = 2m nous avons les graphes ci-dessous :

Pour une contrainte admissible $q'_{max} = 3$ bars.

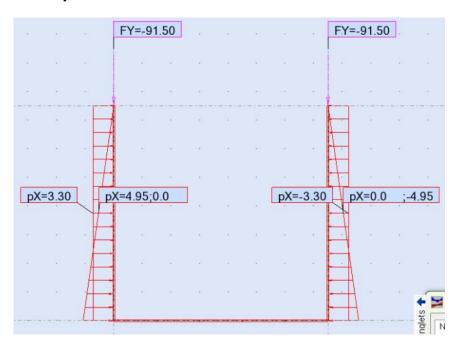
Résultat du pré-dimensionnement

localisation		tronçon 4	PK
	unités	avant correction	après correction
ouverture(l) en m	m	12	12
hauteur intérieure en m	m	6	6
épaisseur traverse(Et)	m	0,4	0,5
épaisseur piédroit(Ep)	m	0,4	0,5
épaisseur de la semelle(Es)	m	0,6	0,6
fiche	m	2	

largeur de la semelle(Ls)	m	1,8	1,8
excentricité(es)	m	-0,2	-0,2

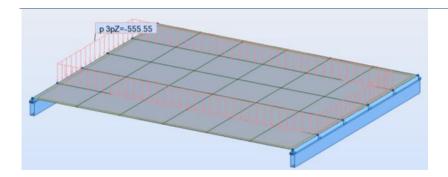
VI DIMENSIONNEMENT

VI.1 CANIVEAU DE 50X60


a-modelisation

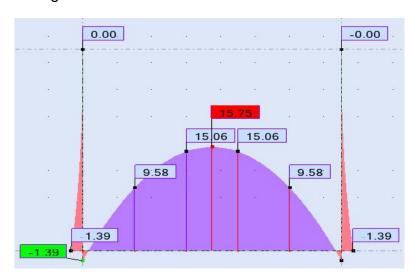
La charge routière défavorable est le sous-système Br. La modélisation pour le cas de charge défavorable est effectuée sous les charges de :

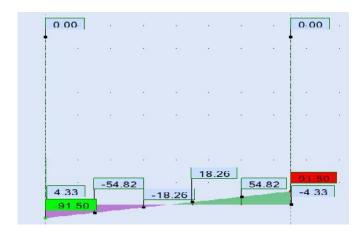
Poussée de terre


Surcharge sur remblai

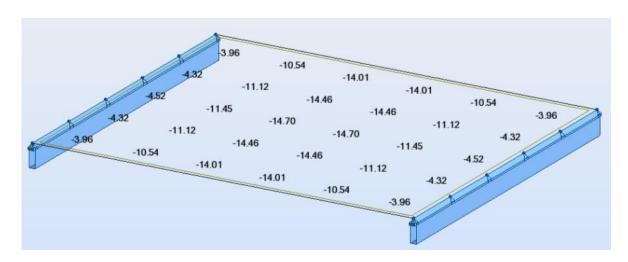
Sous système Br

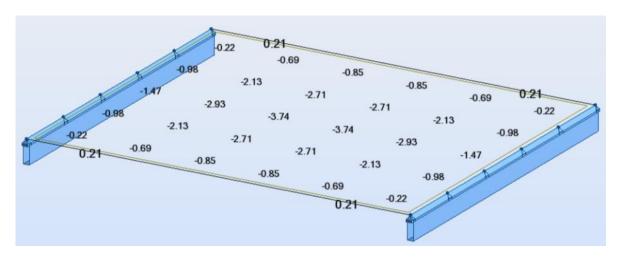
DALETTE DE COUVERTURE


Les calculs ont été effectués en conformément au fascicule 61 par le système Br.


b- diagrammes des efforts

b.1- CANIVEAU 50x60


I- diagramme des moments flechissants


II- diagramme des EFFORTS TRANCHANTS

III- enveloppe des moments flechissants dans la DALETTE DE COUVERTURE SENS XX(sens transversal du caniveau)

SENS YY(sens longitudinal du caniveau)

c- Calcul

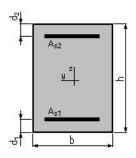
C.1-RADIER ET PAROI

Au vu des faibles dimensions des ouvrages, Les calculs ont été effectués grâce au moment fléchissant maximal se trouvant dans le radier soit 19,58kN.m/m.

Calcul de Section en Flexion Simple

1. Hypoth ses:

Béton: fc28 = 25.0 (MPa) Acier: fe = 500.0 (MPa)


Fissuration non préjudiciable

Prise en compte des armatures comprimées

Pas de prise en compte des dispositions sismiques

Calcul suivant BAEL 91

2. Section:

$$b = 100.0 (cm)$$

$$h = 15 (cm)$$

$$d_1 = 3.5 \text{ (cm)}$$

$$d_2 = 3.5 \text{ (cm)}$$

3. Moments appliqués:

 M_{max} (kN*m) M_{min} (kN*m)

Etat Limite Ultime (fondamental) 0.00 0.00

Etat Limite de Service 19.58 0.00

Etat Limite Ultime (Accidentel) 0.00 0.00

4. Résultats:

Sections d'Acier:

Section théorique $A_{S1} = 3.7$ (cm2) Section théorique $A_{S2} = 0.0$ (cm2)

Section minimum $A_{S min} = 1.5 (cm2)$

théorique \Box = 0.33 (%)

minimum $\square_{min} = 0.13$ (%)

Analyse par Cas:

Cas ELS $M_{max} = 19.58$ (kN*m) $M_{min} = 0.00$ (kN*m)

Coefficient de sécurité: 1.00

Position de l'axe neutre: y = 3.1 (cm)

Bras de levier: Z = 10.5 (cm)

Contrainte maxi du béton: □b = 12.2 (MPa)

Contrainte limite: 0.6 fcj = 15.0 (MPa)

Contrainte de l'acier:

tendue: $\square_S = 500.0 \text{ (MPa)}$

Contrainte limite de l'acier:

 $\Box_{s \text{ lim}} = 500.0 \text{ (MPa)}$

SECTION REELLE:

ACIERS PRINCIPAUX

Ap= **6HA10/m= 4.71 cm²**/m

ACIERS DE REPARTITION

$$A_r = A_p/4 = 1.375 \text{ cm}^2 \text{ soit } 4HA8 = 2.01 \text{ cm}^2/\text{m}$$

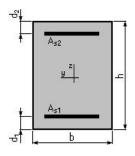
C.2-dalette de couverture

SENS XX (Sens transversal du fosse)

Calcul de Section en Flexion Simple

1. Hypoth ses:

Béton: fc28 = 25.0 (MPa) Acier: fe = 500.0 (MPa)


Fissuration non préjudiciable

Prise en compte des armatures comprimées

Pas de prise en compte des dispositions sismiques

Calcul suivant BAEL 91

2. Section:

$$b = 50.0 (cm)$$

$$h = 20 (cm)$$

 $d_1 = 4.0 \text{ (cm)}$

 $d_2 = 4.0 \text{ (cm)}$

3. Moments appliqués:

 M_{max} (kN*m) M_{min} (kN*m)

Etat Limite Ultime (fondamental) 0.00 0.00

Etat Limite de Service 14.70 0.00

Etat Limite Ultime (Accidentel) 0.00 0.00

4. Résultats:

Sections d'Acier:

Section théorique $A_{S1} = 4.0$ (cm2) Section théorique $A_{S2} = 0.0$ (cm2)

Section minimum $A_{S min} = 0.8 (cm2)$

théorique \Box = 0.72 (%)

minimum $\square_{min} = 0.14 (\%)$

Analyse par Cas:

Cas ELS $M_{max} = 14.70$ (kN*m) $M_{min} = 0.00$ (kN*m)

Coefficient de sécurité: 1.00

Position de l'axe neutre: y = 4.1 (cm)

Bras de levier: Z = 9.6 (cm)

Contrainte maxi du béton: □_b = 15.0 (MPa)

Contrainte limite: 0.6 fcj = 15.0 (MPa)

Contrainte de l'acier:

tendue: $\square_S = 384.0 \text{ (MPa)}$

comprimée: \square_S ' = 3.5 (MPa)

Contrainte limite de l'acier:

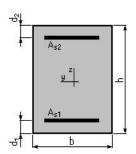
$$\Box_{s} \lim = 500.0 \text{ (MPa)}$$

SENS YY (Sens longitudinal du fosse)

Calcul de Section en Flexion Simple

1. Hypoth ses:

Béton: fc28 = 25.0 (MPa) Acier: fe = 500.0 (MPa)


Fissuration non préjudiciable

Prise en compte des armatures comprimées

Pas de prise en compte des dispositions sismiques

Calcul suivant BAEL 91

2. Section:

$$b = 50.0 (cm)$$

h = 15.0 (cm)

 $d_1 = 4.0 \text{ (cm)}$

 $d_2 = 4.0 \text{ (cm)}$

3. Moments appliqués:

 M_{max} (kN*m) M_{min} (kN*m)

Etat Limite Ultime (fondamental) 0.00 0.00

Etat Limite de Service 3.74 0.00

Etat Limite Ultime (Accidentel) 0.00 0.00

4. Résultats:

Sections d'Acier:

Section théorique $A_{S1} = 0.8$ (cm2) Section théorique $A_{S2} = 0.0$ (cm2)

Section minimum $A_{S min} = 0.8 (cm2)$

théorique = 0.14 (%)

minimum $\square_{min} = 0.14 (\%)$

Analyse par Cas:

Cas ELS $M_{max} = 3.74$ (kN*m) $M_{min} = 0.00$ (kN*m)

Coefficient de sécurité: 1.10

Position de l'axe neutre: y = 2.1 (cm)

Bras de levier: Z = 10.3 (cm)

Contrainte maxi du béton: b = 2.0 (MPa)

Contrainte limite: 0,6 fcj = 15.0 (MPa)

Contrainte de l'acier:

tendue: s = 13.6 (MPa)

Contrainte limite de l'acier:

 $s \lim = 500.0 \text{ (MPa)}$

SECTION REELLE:

ACIERS PRINCIPAUX

Ap= 4HA12= 4.52 cm²

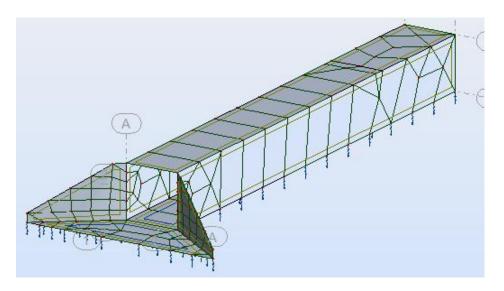
ACIERS DE REPARTITION

A $r min = 4HA8 = 2.01 cm^2/m$

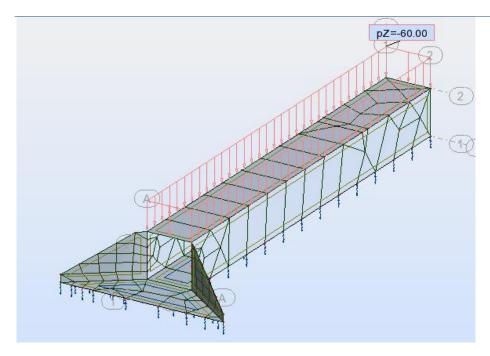
Le même calcul a été pour les autres types de caniveau la modélisation a également été effectuée sur Robot avec les mêmes cas de charges le tableau ci-dessous récapitule les dimensions et ferraillage obtenus pour chaque caniveau :

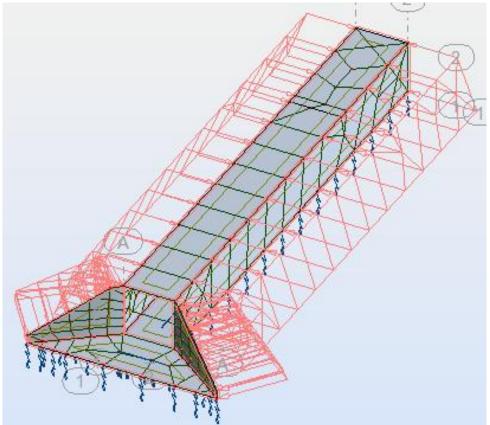
N°	DESIGNATION	Radier et piédroit			Dalle de couverture			
		épaisseur en cm	Ferraillage principale	Ferraillage secondaire	épaisseur en cm	Ferraillage principale	Ferraillage secondaire	
01	Caniveau 50x60	15	6HA10/m	4HA8	20	4HA12	4HA 8	
02	Caniveau 50x50	15	6HA10/m	4HA8	20	4HA12	4HA 8	
03	Caniveau 60x80	20	5HA12/m	4HA8	20	5 HA12	5 HA8	

04	Caniveau 60x70	20	5HA12/m	4HA8	20	5 HA12	5 HA8

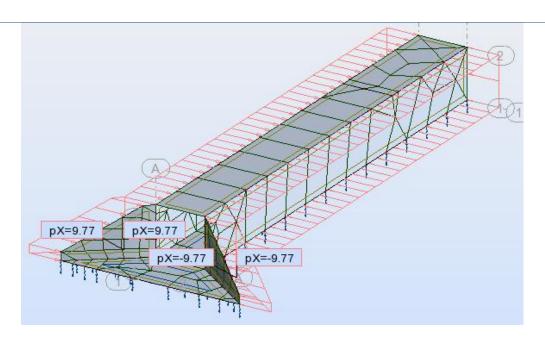

VI.2 CALCUL DES DALOTS

Les Dalots à calculer sont présentés dans le tableau suivant :

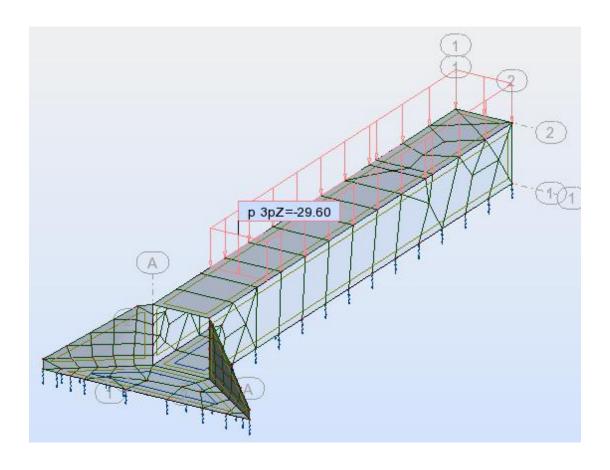

N°	DESIGNATIONS	DIMENSIONS	ép piédroit (en cm)	ép Radier (en cm)	ép Tablier (en cm)
01		1X1	20	20	20
02		2X1	25	25	25
03	DALOT SIMPLE	3X2	30	45	45
04		2X1,5	25	30	30
05		1,5 X1	25	20	25
06		2X1,5X1,5	25	30	25
07	DALOT DOUBLE	2X2X1,5	25	30	25
08		2X2X3	25	30	30

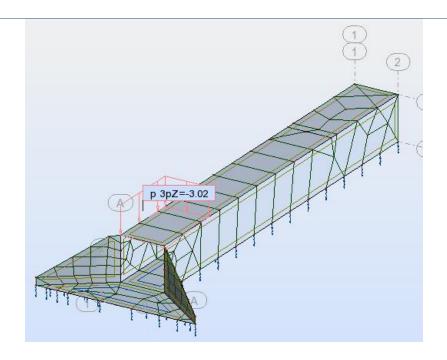

A- DALOT 1x1

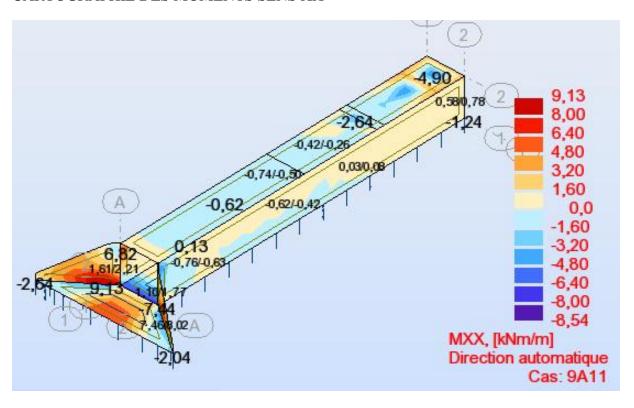
i) MODELISATION

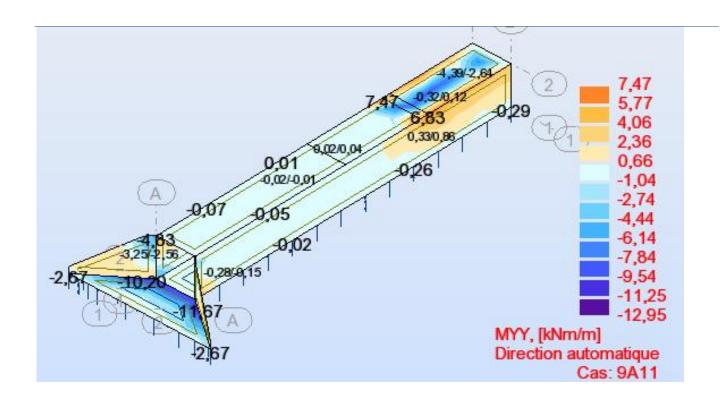


ii) MODELISATION SOUS REMBLAI ET POUSSEE DES TERRES




iii) MODELISATION SOUS SURCHARGE SUR REMBLAI


iv) MODELISATION SOUS SURCHAGE DU AU SYSTEME Bt


V) MODELISATION SOUS SURCHAGE SUR TROTTOIR

Vi) CARTOGRAPHIE DES MOMENTS SENS XX

vii) CARTOGRAPHIE DES MOMENTS SENS YY

Viii CALCUL DU TABLIER

1. Dalle: Dalle4 - panneau n° 4

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,20 (m)

Contour:

bord	début fin		longu			
	x1	y1	x2	y2		(m)
1	0,00	-1,20	10,50	-1,20	10,50	
2	10,50	-1,20	10,50	0,00	1,20	
3	10,50	0,00	0,00	0,00	10,50	
4	0,00	0,00	0,00	-1,20	1,20	11

Appui:

n° Nom dimensions coordonnées bord

(m) x y

0 linéaire 0,20 / 10,50 5,25 0,00 —

0 linéaire 0,20 / 10,50 5,25 -1,20 —

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

0,00 3,14 3,14 3,74

Ferraillage théorique modifié (cm2/m):

0,86 0,93 2,02 3,62

Ferraillage théorique primaire (cm2/m):

0,86 0,93 2,02 3,62

Coordonnées (m):

0,00;-1,20 8,40;-0,40 5,70;0,00 0,00;-0,60

1.5.2. Moments maximaux + ferraillage pour la flexion

^{* -} présence du chapiteau

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	0,86/0,00	0,02/3,14	0,31/0,00	0,01/3,14
Ax(-) (cm2/m)	0,28/0,00	0,93/3,14	0,52/0,00	0,23/3,14
Ay(+) (cm2/m)	1,94/3,14	0,09/3,14	2,02/3,14	0,09/3,14
Ay(-) (cm2/m)	1,45/3,74	2,99/3,74	1,16/3,74	3,62/3,74

ELS

Mxx (kN*m/m)	3,02	-2,66	0,39	-0,28
Myy (kN*m/m)	6,61	-8,23	6,46	-12,41
Mxy (kN*m/m)	-0,45	0,34	0,93	-0,00

ELU

Mxx (kN*m/m)	3,02	-2,66	0,39	-0,28
Myy (kN*m/m)	6,61	-8,23	6,46	-12,41
Mxy (kN*m/m)	-0,45	0,34	0,93	-0,00

Coordonnées (m) 0,00;-1,20 8,40;-0,40 5,70;0,00 0,00;-0,60 Coordonnées* (m) 0,00;10,50;1,20 0,80;2,10;1,20 1,20;4,80;1,20 0,60;10,50;1,20

1.5.4. Flèche

^{* -} Coordonnées dans le repère global de la structure

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 1.4 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58	PZ M	loins loins
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,20[m] Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,20[m] Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,20[m] Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,20[m] Direction=-Z
2	(EF) surfacique uniforme 6	PX=-9),77[kN/m2]
2	(EF) surfacique uniforme 5	PX=9,	77[kN/m2]
2	(EF) surfacique uniforme 54	PX=-9),77[kN/m2]
2	(EF) surfacique uniforme 55	PX=9,	77[kN/m2]
3 P3(1.	(EF) surfacique 3p (contour) 2, 10.5, 1.2) P4(0, 10.5, 1.2)	4	PZ1=-29,60[kN/m2] P1(0, 2, 1.2) P2(1.2, 2, 1.2)
14	(EF) surfacique uniforme 4	PZ=-	60,00[kN/m2]
8 1.2) F	(EF) surfacique 3p (contour) 23(1.2, 2, 1.2) P4(0, 2, 1.2)	4	PZ1=-3,02[kN/m2] P1(0, 0, 1.2) P2(1.3, -0.1,

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 130,26

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées		Arma	Armatures adoptées		At Ar							
	x 1	y1	x2	y2	φ [mm] / [cm]	[cm2/	/m]	[cm2	/m]	
1/1- /	Ax Prin	cipal	0,00	-1,20	10,50	0,00	10,0/	25,0	0,93	<	3,14	
1/2- /	Ay Per	pendici	ulaire	0,00	-1,20	10,50	0,00	10,0 /	21,0	3,62	<	3,74

Ferraillage supérieur

Nom coordonnées		Arma	Armatures adoptées		At Ar							
	x1	y1	x2	y2	φ [mm] / [cm	1]	[cm2/	m]	[cm2	/m]	
1/1+	Ax Prir	ncipal	0,00	-1,20	10,50	0,00	10,0/	25,0	0,86	<	3,14	
1/2+	Av Per	pendic	ulaire	0.00	-1.20	10.50	0.00	10.0 /	25.0	2.02	<	3.14

4. Quantitatif

Volume de Béton = 2,52 (m3)

Surface de Coffrage = 12,60 (m2)

Périmètre de la dalle = 23,40 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 103,32 (kG)

Densité = 41,00 (kG/m3)

Diamètre moyen = 10,0 (mm)

IX CALCUL DU RADIER

1. Dalle: Dalle1 - panneau n° 1

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,20 (m)

Contour:

bord	début fin		longu		
	x1	y1	x2	y2	(m)
1	0,00	1,20	10,50	1,20	10,50
2	10,50	1,20	10,50	0,00	1,20
3	10,50	0,00	0,00	0,00	10,50
4	0,00	0,00	0,00	1,20	1,20

Appui:

n°	Nom dime	dimensions coordonnées					
	(m)	х у					
0	linéaire	0,20 / 10,50 5,25 0,00) —				
0	linéaire	0,20 / 10,50 5,25 1,20) —				

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

3,14 6,04 8,70 4,52

Ferraillage théorique modifié (cm2/m):

0,72 5,69 4,65 3,77

Ferraillage théorique primaire (cm2/m):

0,72 5,69 4,65 3,77

Coordonnées (m):

9,40;0,60 0,00;-0,00 10,50;0,60 0,00;-0,00

1.5.2. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	0,72/3,14	0,20/3,14	0,48/3,14	0,20/3,14
Ax(-) (cm2/m)	0,02/6,04	5,69/6,04	0,01/6,04	5,69/6,04
Ay(+) (cm2/m)	4,18/8,70	1,12/8,70	4,65/8,70	1,12/8,70
Ay(-) (cm2/m)	0,09/4,52	3,77/4,52	0,09/4,52	3,77/4,52

ELS

Mxx (kN*m/m) 2,84 -17,780,32 -17,78

Myy (kN*m/m)	14,26 -10,9015,79 -10,90
Mxy (kN*m/m)	-0,00 2,65 -0,00 2,65

ELU

Mxx (kN*m/m)	2,84	-17,78	0,32	-17,78
Myy (kN*m/m)	14,26	-10,90	15,79	-10,90
Mxv (kN*m/m)	-0.00	2.65	-0.00	2.65

Coordonnées (m) 9,40;0,60 0,00;-0,00 10,50;0,60 0,00;-0,00 Coordonnées* (m) 0,60;9,40;0,00 1,20;0,00;0,00 0,60;10,50;0,00 1,20;0,00;0,00

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

 $|f(-)| = 1.7 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58	PZ N	Moins	
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,20[m]	Direction=-Z

^{* -} Coordonnées dans le repère global de la structure

1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
2	(EF) surfacique uniforme 6	PX=-9	9,77[kN/m2]	
2	(EF) surfacique uniforme 5	PX=9	,77[kN/m2]	
2	(EF) surfacique uniforme 54	PX=-9	9,77[kN/m2]	
2	(EF) surfacique uniforme 55	PX=9	,77[kN/m2]	
3 P3(1	(EF) surfacique 3p (contour) .2, 10.5, 1.2) P4(0, 10.5, 1.2)	4	PZ1=-29,60[kN/m2] P1(0, 2, 1.2) F	P2(1.2, 2, 1.2)
14	(EF) surfacique uniforme 4	PZ=	-60,00[kN/m2]	
8 1.2) l	(EF) surfacique 3p (contour) P3(1.2, 2, 1.2) P4(0, 2, 1.2)	4	PZ1=-3,02[kN/m2] P1(0, 0, 1.2) P2	2(1.3, -0.1,

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 221,70

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées **Armatures adoptées** At Ar **x1 y1 x2 y2** φ [mm] / [cm] [cm2/m] [cm2/m] 1/1- Ax Principal 0,00 0,00 10,50 1,20 10,0 / 13,0 5,69 < 6,04 0,00 0,00 10,50 1,20 12,0 / 25,0 3,77 < 1/2- Ay Perpendiculaire 4,52

Ferraillage supérieur

Nom coordonnées Armatures adoptées At Ar

x1 y1 x2 y2 \(\phi \) [mm] / [cm] [cm2/m] [cm2/m]

1/1+ Ax Principal 0,00 0,00 10,50 1,20 10,0 / 25,0 0,72 < 3,14

1/2+ Ay Perpendiculaire 0,00 0,00 10,50 1,20 12,0 / 13,0 4,65 < 8,70

4. Quantitatif

Volume de Béton = 2,52 (m3)

Surface de Coffrage = 12,60 (m2)

Périmètre de la dalle = 23,40 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 214,68 (kG)

Densité = 85,19 (kG/m3)

Diamètre moyen = 11,0 (mm)

X- CALCUL DU PIEDROIT

1. Dalle: Dalle6 - panneau n° 6

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,20 (m)

Contour:

bord	début fin		longu		
	x1	y1	x2	y2	(m)
1	0,00	-1,20	10,50	-1,20	10,50
2	10,50	-1,20	10,50	0,00	1,20
3	10,50	0,00	0,00	0,00	10,50
4	0,00	0,00	0,00	-1,20	1,20

Appui:

n°	Nom dime	Nom dimensions coordonnées						
	(m)	X	у					
0	linéaire	1,20 /	0,20	0,00	-0,60	_		
0	linéaire	0,20 /	10,50	5,25	-1,20	_		
0	linéaire	0,20 /	10,50	5,25	0,00	_		

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

0,00 0,00 3,93 3,93

Ferraillage théorique modifié (cm2/m):

1,02 1,99 3,58 0,35

Ferraillage théorique primaire (cm2/m):

1,02 1,99 3,58 0,35

Coordonnées (m):

0,00;-1,14 0,00;-0,12 0,00;-1,20 10,50;-0,60

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	1,02/0,00	0,48/0,00	1,02/0,00	0,23/3,14
Ax(-) (cm2/m)	0,00/0,00	1,99/0,00	0,00/0,00	0,05/3,14
Ay(+) (cm2/m)	3,08/3,93	0,95/3,93	3,58/3,93	1,91/3,93
Ay(-) (cm2/m)	0,12/3,93	0,16/3,93	0,01/3,93	0,35/3,93

ELS

Mxx (kN*m/m) 3,42 -7,61 1,68 0,06 Myy (kN*m/m) 10,36 1,90 11,70 6,75 Mxy (kN*m/m) 0,71 0,18 1,07 0,04

ELU

Mxx (kN*m/m)	3,42	-7,61	1,68	0,06
Myy (kN*m/m)	10,36	1,90	11,70	6,75
Mxy (kN*m/m)	0,71	0,18	1,07	0,04

Coordonnées (m) 0,00;-1,14 0,00;-0,12 0,00;-1,20 10,50;-0,60 Coordonnées* (m) 1,20;0,00;0,06 1,20;0,00;1,08 1,20;0,00;0,00 1,20;10,50;0,60

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 0.0 \text{ (cm)} <= fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58	PZ I	Moins	
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z

^{* -} Coordonnées dans le repère global de la structure

- 1 (EF) pression hydrostatique 55 Gamma=-6,60[kG/m3] H=4,20[m] Direction=-Z
- 2 (EF) surfacique uniforme 6 PX=-9,77[kN/m2]
- 2 (EF) surfacique uniforme 5 PX=9,77[kN/m2]
- 2 (EF) surfacique uniforme 54 PX=-9,77[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=9,77[kN/m2]
- 3 (EF) surfacique 3p (contour) 4 PZ1=-29,60[kN/m2] P1(0, 2, 1.2) P2(1.2, 2, 1.2) P3(1.2, 10.5, 1.2) P4(0, 10.5, 1.2)
- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 1.2) P2(1.3, -0.1, 1.2) P3(1.2, 2, 1.2) P4(0, 2, 1.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 139,88
- 2 151,69
- 3 159,46
- 4 159,46
- 5 167,23

6 - 179,04

7 - 184,02

8 - 191,79

9 - 243,70

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées		Arma	Armatures adoptées			At	Ar					
	x1	y1	x2	y2	φ [mm] / [cm	n]	[cm2/	m]	[cm2	/m]	
1/1- /	Ax Prin	cipal	0,00	-1,20	10,50	0,00	10,0/	25,0	1,99	<	3,14	
1/2- /	Ay Perp	pendicu	ulaire	0,00	-1,20	10,50	0,00	10,0/	20,0	0,35	<	3,93

Ferraillage supérieur

Nom coordonnées			Arma	Armatures adoptées			At Ar					
	x1	y1	x2	y2	φ [mm	n] / [cm	1]	[cm2/	m]	[cm2	/m]	
1/1+	Ax Prir	ncipal	0,00	-1,20	10,50	0,00	10,0/	25,0	1,02	<	3,14	
1/2+	Ay Per	pendic	ulaire	0,00	-1,20	10,50	0,00	10,0 /	20,0	3,58	<	3,93

4. Quantitatif

Volume de Béton = 2,52 (m3)

Surface de Coffrage = 12,60 (m2)

Périmètre de la dalle = 23,40 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 113,16 (kG)

Densité = 44,91 (kG/m3)

Diamètre moyen = 10,0 (mm)

Liste par diamètres:

IX CALCUL DU MUR EN AILE

1. Dalle: Dalle55 - panneau n° 55

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,20 (m)

Contour:

bord	début fin		longu			
	x1	y1	x2	y2		(m)
1	-0,00	1,70	1,20	1,70	1,20	
2	1,20	1,70	1,20	1,41	0,28	
3	1,20	1,41	0,20	0,00	1,73	
4	0,20	0,00	-0,00	0,00	0,20	60

5 -0,00 0,00 -0,00 1,70 1,70

Appui:

n° Nom dimensions coordonnées bord

(m) x y

0 linéaire 1,70 / 0,20 0,00 0,85 —

0 linéaire 0,20 / 1,20 0,60 1,70 —

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

Ferraillage théorique modifié (cm2/m):

Ferraillage théorique primaire (cm2/m):

Coordonnées (m):

1.5.2. Moments maximaux + ferraillage pour la flexion

^{* -} présence du chapiteau

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	4,20/6,04	0,91/0,00	4,20/6,04	0,37/6,04
Ax(-) (cm2/m)	0,21/3,14	0,57/3,14	0,21/3,14	0,36/3,14
Ay(+) (cm2/m)	1,84/0,00	0,53/0,00	1,84/0,00	0,60/4,52
Ay(-) (cm2/m)	0,09/0,00	0,32/0,00	0,09/0,00	1,78/4,52

ELS

Mxx (kN*m/m)	13,98	-0,87	13,98	1,18
Myy (kN*m/m)	5,29	-1,17	5,29	-6,28
Mxy (kN*m/m)	1,31	-0,14	1,31	-0,47

ELU

Mxx (kN*m/m)	13,98	-0,87	13,98	1,18
Myy (kN*m/m)	5,29	-1,17	5,29	-6,28
Mxy (kN*m/m)	1,31	-0,14	1,31	-0,47

Coordonnées (m) -0,00;1,70 -0,00;-0,00 -0,00;1,70 1,20;1,70

Coordonnées* (m) 0,00;0,00;0,00 -1,20;-1,20;0,00 0,00;0,00;0,00 0,00;0,00;1,20

^{* -} Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.1$$
 (cm) <= fdop(+) = 3.0 (cm)

$$|f(-)| = 0.0 \text{ (cm)} <= fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

1

14

Cas Type Liste Valeur

poids propre 1 4A6 54 55 58 PZ Moins

1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
2	(EF) surfacique uniforme 6	PX=	-9,77[kN/m2]	
2	(EF) surfacique uniforme 5	PX=	9,77[kN/m2]	
2	(EF) surfacique uniforme 54	PX=	-9,77[kN/m2]	
2	(EF) surfacique uniforme 55	PX=	9,77[kN/m2]	
3 P3(1.	(EF) surfacique 3p (contour) 2, 10.5, 1.2) P4(0, 10.5, 1.2)	4	PZ1=-29,60[kN/m2] P1(0, 2, 1.2)	P2(1.2, 2, 1.2)

PZ=-60,00[kN/m2]

4

Combinaison / Composante Définition

(EF) surfacique uniforme 4

(EF) surfacique 3p (contour)

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

1.2) P3(1.2, 2, 1.2) P4(0, 2, 1.2)

ELS/11 (1+2+8+14)*1.00

PZ1=-3,02[kN/m2] P1(0, 0, 1.2) P2(1.3, -0.1,

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 19,03

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées		Armatures adoptées			At Ar								
		x 1	y1	x2	y2	φ [mm	n] / [cn	ո]	[cm2/	/m]	[cm2	/m]	
1,	/1- /	Ax Prin	cipal	-0,00	0,00	1,20	1,70	10,0/	25,0	0,57	<	3,14	
1,	/2- /	Av Peri	oendicu	ılaire	-0.00	0.00	1.20	1.70	12.0 /	25.0	1.78	<	4.52

Ferraillage supérieur

Nom coordonnées		Arma	rmatures adoptées			At Ar						
	x1	y1	x2	y2	φ [mn	n] / [cn	n]	[cm2/	/m]	[cm2	/m]	
1/1+	Ax Prir	ncipal	-0,00	0,00	1,20	1,70	10,0/	13,0	4,20	<	6,04	
1/2+	Ay Per	pendic	ulaire	-0,00	0.00	1,20	1,70	12,0 /	25.0	1,84	<	4,52

4. Quantitatif

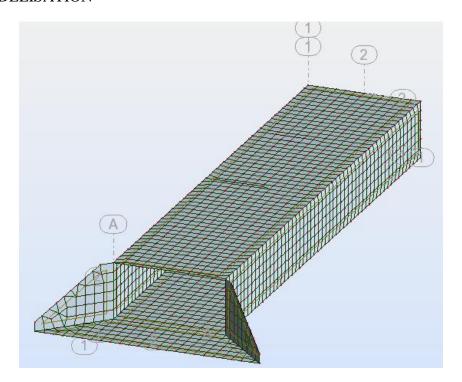
Volume de Béton = 0,27 (m3)

Surface de Coffrage = 1,33 (m2)

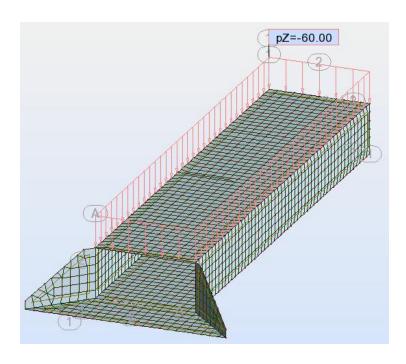
Périmètre de la dalle = 5,11 (m)

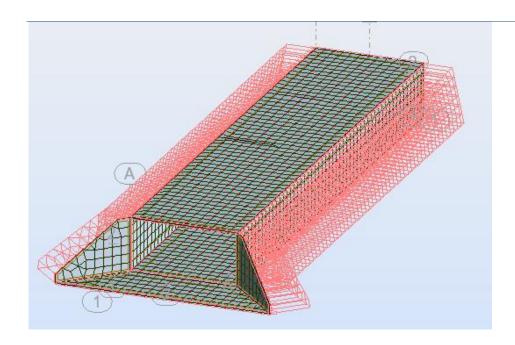
Superficie des réservations = 0.00 (m2)

Acier HA 500

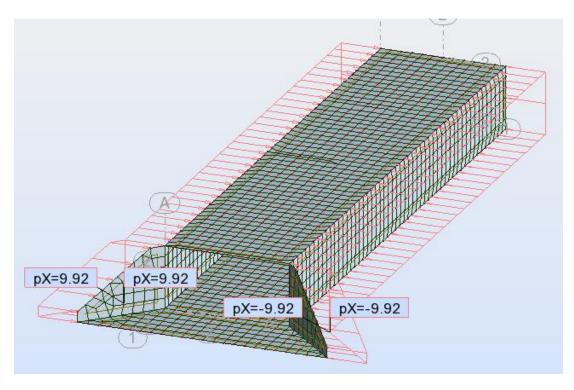

Poids total = 15,17 (kG)

Densité = 57,05 (kG/m3)

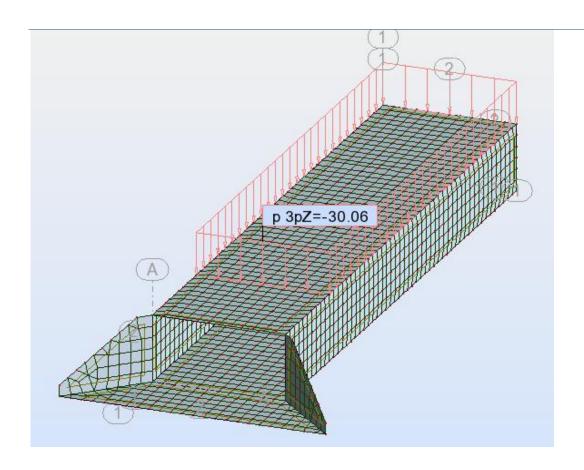

Diamètre moyen = 10,7 (mm)

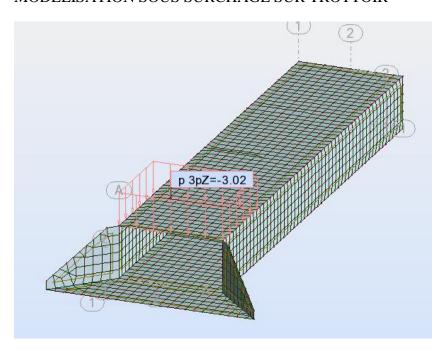

B)- DALOT 2x1

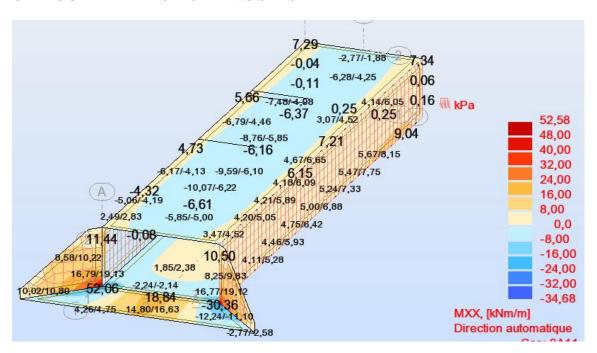
MODELISATION

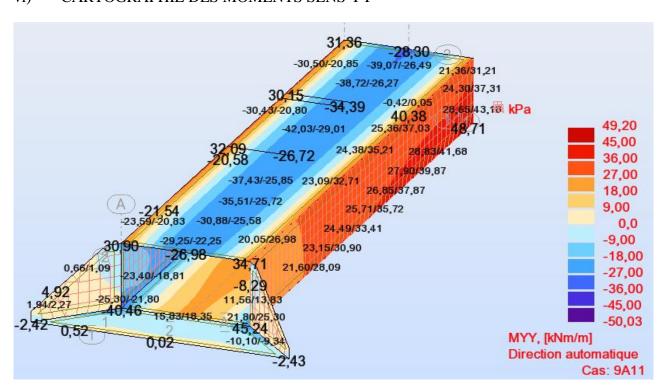


ii) MODELISATION SOUS REMBLAI ET POUSSEE DES TERRES




ii) MODELISATION SOUS SURCHARGE SUR REMBLAI


iii) MODELISATION SOUS SURCHAGE DU AU SYSTEME Bt


iV) MODELISATION SOUS SURCHAGE SUR TROTTOIR

V) CARTOGRAPHIE DES MOMENTS SENS XX

vi) CARTOGRAPHIE DES MOMENTS SENS YY

Vii CALCUL DU TABLIER

1. Dalle: Dalle4 - panneau n° 4

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début fin		longu			
	x1	y1	x2	y2		(m)
1	0,00	-2,40	10,50	-2,40	10,50	
2	10,50	-2,40	10,50	0,00	2,40	
3	10,50	0,00	0,00	0,00	10,50	
4	0,00	0,00	0,00	-2,40	2,40	

Appui:

n°	Nom dime	om dimensions coordonnées					
	(m)	х у					
0	linéaire	0,20 / 10,50 5,25 0,0	0 —				
0	linéaire	0,20 / 10,50 5,25 -2,4	40 —				

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Ferraillage réelle (cm2/m):

3,14 3,14 7,70 21,99

Ferraillage théorique modifié (cm2/m):

2,09 2,39 7,65 11,47

Ferraillage théorique primaire (cm2/m):

2,09 2,39 7,65 11,47

Coordonnées (m):

0,00;0,00 7,60;-1,20 10,50;0,00 0,00;-1,20

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	2,09/3,14	0,01/3,14	1,70/3,14	0,00/3,14
Ax(-) (cm2/m)	0,81/3,14	2,39/3,14	1,07/3,14	0,41/3,14
Ay(+) (cm2/m)	5,55/7,70	0,07/7,70	7,65/7,70	0,07/7,70
Ay(-) (cm2/m)	0,94/11,00	10,00/11,00	0,13/11,00	11,47/21,99

ELS

Mxx (kN*m/m)	8,56	-12,02	:-5,25	-0,57
Myy (kN*m/m)	23,92	-43,76	34,16	-50,59
Mxy (kN*m/m)	2,19	-0.00	2,68	0.00

ELU

Mxx (kN*m/m)	8,56	-12,02	:-5,25	-0,57
Myy (kN*m/m)	23,92	-43,76	34,16	-50,59
Mxy (kN*m/m)	2,19	-0,00	2,68	0,00

Coordonnées (m) 0,00;0,00 7,60;-1,20 10,50;0,00 0,00;-1,20 Coordonnées* (m) 2,40;10,50;1,20 1,20;2,90;1,20 2,40;0,00;1,20 1,20;10,50;1,20

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

 $|f(-)| = 2.0 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58	PZ M	Noins	
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
2	(EF) surfacique uniforme 6	PX=-9		

^{* -} Coordonnées dans le repère global de la structure

- 2 (EF) surfacique uniforme 5 PX=9,92[kN/m2]
- 2 (EF) surfacique uniforme 54 PX=-9,92[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=9,92[kN/m2]
- 3 (EF) surfacique 3p (contour) 4 PZ1=-30,06[kN/m2] P1(0, 2, 1.2) P2(2.4, 2, 1.2) P3(2.4, 10.5, 1.2) P4(0, 10.5, 1.2)
- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 1.2) P2(2.4, 0, 1.2) P3(2.4, 2, 1.2) P4(0, 2, 1.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 500,83
- 2 511,23
- 3 514,79
- 4 537,70
- 5 538,79
- 6 563,62
- 7 569,49

8 - 570,59

9 - 620,19

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées		Arma	Armatures adoptées		At	Ar							
	x1	y1	x2	y2	φ [mm	n] / [cm	n]	[cm2/	m]	[cm2/	m]		
1/1- /	Ax Prin	cipal	0,00	-2,40	10,50	0,00	10,0/	25,0	2,39	<	3,14		
1/2-(1	/3-) Ay	y Perpe	endicul	aire	0,00	-1,60	0,95	-0,80	14,0 /	7,0	11,47	<	21,99
1/3- /	Ay Perp	pendicu	ulaire	0,00	-2,40	10,50	0,00	14,0 /	14,0	10,93	<	11,00	

Ferraillage supérieur

Nom coordonnées			es	Armatures adoptées			At	Ar					
	x1	y1	x2	y2	φ [mm] / [cm]		[cm2/m]		[cm2/m]				
1/1+	Ax Prir	ncipal	0,00	-2,40	10,50	0,00	10,0/	25,0	2,09	<	3,14		
1/2+	Ay Per	pendic	ulaire	0,00	-2,40	10,50	0,00	14,0 /	20,0	7,65	<	7,70	

4. Quantitatif

Volume de Béton = 6,30 (m3)

Surface de Coffrage = 25,20 (m2)

Périmètre de la dalle = 25,80 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 482,31 (kG)

Densité = 76,56 (kG/m3)

Diamètre moyen = 12,6 (mm)

Liste par diamètres:

Vii CALCUL DU RADIER

1. Dalle: Dalle1 - panneau n° 1

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,20 (m)

Contour:

bord	début	fin	longu		
	x1	y1	x2	y2	(m)
1	0,00	2,40	10,50	2,40	10,50
2	10,50	2,40	10,50	0,00	2,40
3	10,50	0,00	0,00	0,00	10,50
4	0,00	0,00	0,00	2,40	2,40

Appui:

n° Nom dimensions coordonnées bord

(m) x y

0 linéaire 0,20 / 10,50 5,25 0,00 —

0 linéaire 0,20 / 10,50 5,25 2,40 —

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

3,14 9,82 25,13 13,99

Ferraillage théorique modifié (cm2/m):

2,15 8,43 14,35 13,68

Ferraillage théorique primaire (cm2/m):

2,15 8,43 14,35 13,68

Coordonnées (m):

8,60;1,20 0,00;-0,00 10,50;1,20 10,50;2,40

1.5.2. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

^{* -} présence du chapiteau

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	2,15/3,14	0,08/3,14	0,31/3,14	0,74/3,14
Ax(-) (cm2/m)	0,01/3,27	8,43/9,82	0,00/0,00	2,84/3,27
Ay(+) (cm2/m)	12,78/25,13	0,00/0,00	14,35/25,13	0,03/12,57
Ay(-) (cm2/m)	0,05/13,99	11,61/13,99	0,06/13,99	13,68/13,99

ELS

Mxx (kN*m/m)	8,24	-26,48	30,37	-7,92
Myy (kN*m/m)	41,31	-35,31	46,08	-44,02
Mxy (kN*m/m)	0,00	3,61	0,00	1,66

ELU

Mxx (kN*m/m)	8,24	-26,48	30,37	-7,92
Myy (kN*m/m)	41,31	-35,31	46,08	-44,02
Mxy (kN*m/m)	0,00	3,61	0,00	1,66

Coordonnées (m) 8,60;1,20 0,00;-0,00 10,50;1,20 10,50;2,40 Coordonnées* (m) 1,20;8,60;0,00 2,40;0,00;0,00 1,20;10,50;0,00 0,00;10,50;0,00

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

^{* -} Coordonnées dans le repère global de la structure

$$|f(-)| = 1.8 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58	PZ Moins						
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,20[m] Direction=-Z					
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,20[m]					
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,20[m] Direction=-Z					
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,20[m] Direction=-Z					
2	(EF) surfacique uniforme 6	PX=-9,92[kN/m2]						
2	(EF) surfacique uniforme 5	PX=9,92[kN/m2]						
2	(EF) surfacique uniforme 54	PX=-9	9,92[kN/m2]					
2	(EF) surfacique uniforme 55	PX=9	,92[kN/m2]					
3 P3(2.	(EF) surfacique 3p (contour) 4, 10.5, 1.2) P4(0, 10.5, 1.2)	4	PZ1=-30,06[kN/m2] P1(0, 2, 1.2) P2(2.4, 2, 1.2)					
14	(EF) surfacique uniforme 4	PZ=	-60,00[kN/m2]					
8 P3(2.	(EF) surfacique 3p (contour) 4, 2, 1.2) P4(0, 2, 1.2)	4 PZ1=-3,02[kN/m2] P1(0, 0, 1.2) P2(2.4, 0, 1.2)						

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00 ELS/10 (1+3+8+14)*1.00 ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 686,91
- 2 692,56
- 3 694,18
- 4 723,65
- 5 732,12
- 6 735,49
- 7 782,09
- 8 785,45
- 9 786,15
- 10 878,79

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées				Armatures adoptées				At	Ar			
	x1	y 1	x2	y2	φ [mm	n] / [cm	n]	[cm2/	m]	[cm2/	/m]	
1/1-(1	/2-) A	x Princ	ipal	0,00	0,00	0,95	2,40	10,0 /	8,0	8,43	<	9,82
1/2-	Ax Prir	cipal	0,00	0,00	10,50	2,40	10,0/	24,0	3,12	<	3,27	
1/3-	Ay Per	pendicı	ulaire	0,00	0,00	10,50	2,40	14,0 /	11,0	13,68	<	13,99

Ferraillage supérieur

Nom coordonnées Armatures adoptées At Ar

x1 y1 x2 y2 ϕ [mm] / [cm] [cm2/m] [cm2/m]

1/1+ Ax Principal 0,00 0,00 10,50 2,40 10,0 / 25,0 2,15 < 3,14

1/2+(1/3+) Ay Perpendiculaire 7,64 0,80 10,50 1,60 16,0 / 8,0 14,35 < 25,13

1/3+ Ay Perpendiculaire 0,00 0,00 10,50 2,40 16,0 16,0 12,33 < 12,57

4. Quantitatif

Volume de Béton = 5.04 (m3)

Surface de Coffrage = 25,20 (m2)

Périmètre de la dalle = 25,80 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 703,71 (kG)

Densité = 139,63 (kG/m3)

Diamètre moyen = 13,1 (mm)

Liste par diamètres:

Viii CALCUL DU PIEDROIT

1. Dalle: Dalle5 - panneau n° 5

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,20 (m)

Contour:

bord	début	fin	longueur					
	x1	y1	x2	y2	(m)			
1	0,00	-1,20	10,50	-1,20	10,50			
2	10,50	-1,20	10,50	0,00	1,20			
3	10,50	0,00	0,00	0,00	10,50			
4	0,00	0,00	0,00	-1,20	1,20			

Appui:

n°	Nom	dime	dimensions coordonnées						
		(m)	x	у					
0	linéair	e	1,20 /	0,20	0,00	-0,60			
0	linéair	e	0,20 /	10,50	5,25	-1,20			
0	linéair	·e	0,25 /	10,50	5,25	0,00	_		

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

3,27 3,27 18,28 18,28

Ferraillage théorique modifié (cm2/m):

3,17 2,88 0,30 13,13

Ferraillage théorique primaire (cm2/m):

3,17 2,88 0,30 13,13

Coordonnées (m):

0,00;-0,40 0,00;-1,20 0,40;-0,60 10,30;-1,20

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	3,17/3,27	0,11/3,27	0,38/3,27	0,01/3,27
Ax(-) (cm2/m)	0,23/3,27	2,88/3,27	1,13/3,27	2,12/3,27
Ay(+) (cm2/m)	0,24/18,28	0,07/18,28	0,30/18,28	0,09/18,28
Av(-) (cm2/m)	3.11/18.28	12.23/18.28	4.41/18.28	13.13/18.28

ELS

Mxx (kN*m/m) 11,15 -10,60-2,47 -6,44 Myy (kN*m/m) -5,77 -39,65-11,86-41,81 Mxy (kN*m/m) -2,09 -1,12 0,14 2,43 85

ELU

Mxx (kN*m/m)	11,15 -10,60-2,47 -6,44
Myy (kN*m/m)	-5,77 -39,65-11,86-41,81
Mxy (kN*m/m)	-2.09 -1.12 0.14 2.43

Coordonnées (m) 0,00;-0,40 0,00;-1,20 0,40;-0,60 10,30;-1,20 Coordonnées* (m) 0,00;0,00;0,80 0,00;0,00;0,00 0,00;0,40;0,60 0,00;10,30;0,00

* - Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 0.1 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58	PZ I	Vioins	
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z

- 2 (EF) surfacique uniforme 6 PX=-9,92[kN/m2]
- 2 (EF) surfacique uniforme 5 PX=9,92[kN/m2]
- 2 (EF) surfacique uniforme 54 PX=-9,92[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=9,92[kN/m2]
- 3 (EF) surfacique 3p (contour) 4 PZ1=-30,06[kN/m2] P1(0, 2, 1.2) P2(2.4, 2, 1.2) P3(2.4, 10.5, 1.2) P4(0, 10.5, 1.2)
- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 1.2) P2(2.4, 0, 1.2) P3(2.4, 2, 1.2) P4(0, 2, 1.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 344,26
- 2 350,34
- 3 352,99
- 4 356,17
- 5 366,96
- 6 366,96

7 - 377,76

8 - 381,80

9 - 407,43

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées		Arma	Armatures adoptées			At	Ar						
	x1	y 1	x2	y2	φ [mm	n] / [cm	n]	[cm2/	m]	[cm2/	/m]		
1/1- /	Ax Prin	cipal	0,00	-1,20	10,50	0,00	10,0/	24,0	2,88	<	3,27		
1/2-(1	/4-) Ay	y Perpe	endicul	aire	0,00	-1,20	10,50	-0,60	16,0 /	11,0	13,13	<	18,28
1/3-(1	/4-) Ay	y Perpe	endicul	aire	9,55	-0,60	10,50	0,00	16,0 /	11,0	9,56	<	18,28
1/4- /	Ay Perp	pendicu	ulaire	0,00	-1,20	10,50	0,00	16,0 /	22,0	8,76	<	9,14	

Ferraillage supérieur

Nom	coordonnées		Armatures adoptées			At	Ar						
	x1	y 1	x2	y2	φ [mm	n] / [cm	n]	[cm2/	m]	[cm2/	/m]		
1/1+	Ax Prir	ncipal	0,00	-1,20	10,50	0,00	10,0/	24,0	3,17	<	3,27		
1/2+(1/4+) /	y Perp	endicu	ılaire	0,00	-1,20	10,50	-0,60	16,0 /	11,0	0,30	<	18,28
1/3+(1/4+) /	y Perp	endicu	ılaire	9,55	-0,60	10,50	0,00	16,0 /	11,0	0,21	<	18,28
1/4+	Av Per	pendic	ulaire	0.00	-1,20	10,50	0.00	16,0/	22,0	0.30	<	9,14	

4. Quantitatif

Volume de Béton = 2,52 (m3)

Surface de Coffrage = 12,60 (m2)

Périmètre de la dalle = 23,40 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 402,77 (kG)

Densité = 159.83 (kG/m3)

Diamètre moyen = 14,0 (mm)

IX CALCUL DU MUR EN AILE

1. Dalle: Dalle55 - panneau n° 55

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON30; résistance caractéristique = 30,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 0 h

Type de calcul : flexion + compression/traction

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début	fin	longu	longueur				
	x1	y1	x2	y2		(m)		
1	-0,00	1,70	1,20	1,70	1,20			
2	1,20	1,70	1,20	1,41	0,28			
3	1,20	1,41	0,20	0,00	1,73			
4	0,20	0,00	-0,00	0,00	0,20	00		

5 -0,00 0,00 -0,00 1,70 1,70

Appui:

n° Nom dimensions coordonnées bord

(m) x y

0 linéaire 1,70 / 0,20 0,00 0,85 —

0 linéaire 0,25 / 1,20 0,60 1,70 —

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion, compression/traction

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

10,26 2,19 10,58 10,26

Ferraillage théorique modifié (cm2/m):

7,80 2,06 8,90 10,17

Ferraillage théorique primaire (cm2/m):

7,80 2,06 8,90 10,17

Coordonnées (m):

-0,00;1,48 1,20;1,41 -0,00;1,70 1,20;1,70

1.5.2. Moments maximaux + ferraillage pour la flexion, compression/traction

^{* -} présence du chapiteau

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	7,80/10,26	5,00/10,26	7,80/10,26	5,00/10,26
Ax(-) (cm2/m)	0,00/0,00	2,06/2,19	0,00/0,00	2,06/2,19
Ay(+) (cm2/m)	8,90/10,58	6,60/10,58	8,90/10,58	6,60/10,58
Ay(-) (cm2/m)	2,21/10,26	5,10/10,26	2,21/10,26	10,17/10,26

ELS

Mxx (kN*m/m)	34,19	1,52	52,06	7,35
Myy (kN*m/m)	6,78	-1,34	16,06	-17,28
Mxy (kN*m/m)	1,68	4,36	-1,15	7,17

Coordonnées (m) -0,00;1,48 1,20;1,41 -0,00;1,70 1,20;1,70

Coordonnées* (m) -0,15;-0,15;0,00 -0,20;-0,20;1,20 0,00;0,00;0,00 0,00;0,00;1,20

1.5.4. Flèche

$$|f(+)| = 0.2 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 0.0 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

^{* -} Coordonnées dans le repère global de la structure

2. Chargements:

Cas Type Liste Valeur

- 1 poids propre 1 4A6 54 55 58 PZ Moins
- 1 (EF) pression hydrostatique 6 Gamma=-6,60[kG/m3] H=4,20[m] Direction=-Z
- 1 (EF) pression hydrostatique 5 Gamma=6,60[kG/m3] H=4,20[m] Direction=-Z
- 1 (EF) pression hydrostatique 54 Gamma=-6,60[kG/m3] H=4,20[m] Direction=-Z
- 1 (EF) pression hydrostatique 55 Gamma=-6,60[kG/m3] H=4,20[m] Direction=-Z
- 2 (EF) surfacique uniforme 6 PX=-9,92[kN/m2]
- 2 (EF) surfacique uniforme 5 PX=9,92[kN/m2]
- 2 (EF) surfacique uniforme 54 PX=-9,92[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=9,92[kN/m2]
- 3 (EF) surfacique 3p (contour) 4 PZ1=-30,06[kN/m2] P1(0, 2, 1.2) P2(2.4, 2, 1.2) P3(2.4, 10.5, 1.2) P4(0, 10.5, 1.2)
- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 1.2) P2(2.4, 0, 1.2) P3(2.4, 2, 1.2) P4(0, 2, 1.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 34,75
- 2 39,23
- 3 39,23
- 4 41,54

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées		Armatures adoptées			At	Ar							
		x1	y 1	x2	y2	φ [mn	n] / [cn	n]	[cm2/	m]	[cm2/	m]	
	1/1-	Ax Prin	cipal	-0,00	0,00	1,20	1,70	8,0 / 2	23,0	2,06	<	2,19	
	1/2-	Ay Peri	pendicu	ulaire	-0,00	0,00	1,20	1,70	14,0 /	15,0	10,17	<	10,26

Ferraillage supérieur

Nom coordonnées		Armatures adoptées				At Ar						
	x1	y1	x2	y2	φ [mn	n] / [cn	n]	[cm2/	m]	[cm2	/m]	
1/1+	Ax Prir	ncipal	-0,00	0,00	1,20	1,70	14,0/	15,0	7,80	<	10,26	
1/2+	Av Per	pendic	ulaire	-0.00	0.00	1.20	1.70	16.0 /	19.0	8.90	<	10.58

4. Quantitatif

Volume de Béton = 0.33 (m3)

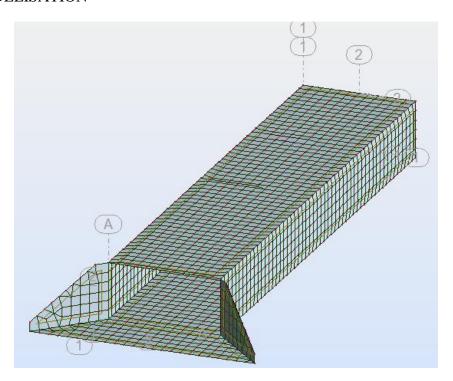
Surface de Coffrage = 1,33 (m2)

Périmètre de la dalle = 5,11 (m)

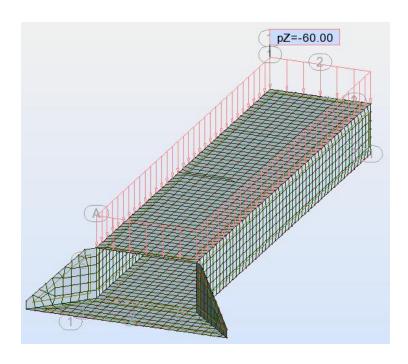
Superficie des réservations = 0,00 (m2)

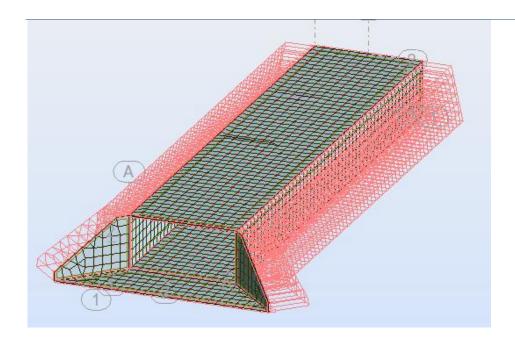
Acier HA 500

Poids total = 30,13 (kG)

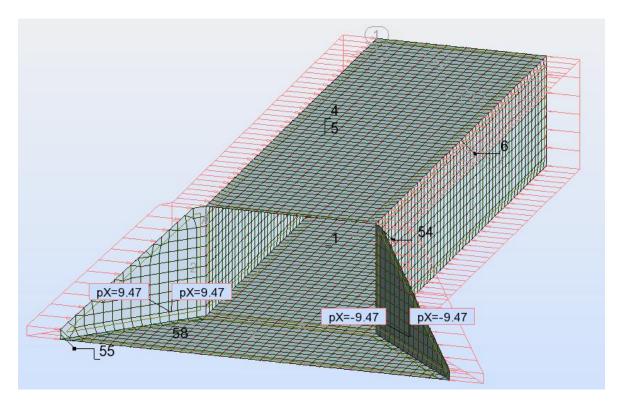

Densité = 90,65 (kG/m3)

Diamètre moyen = 13,2 (mm)

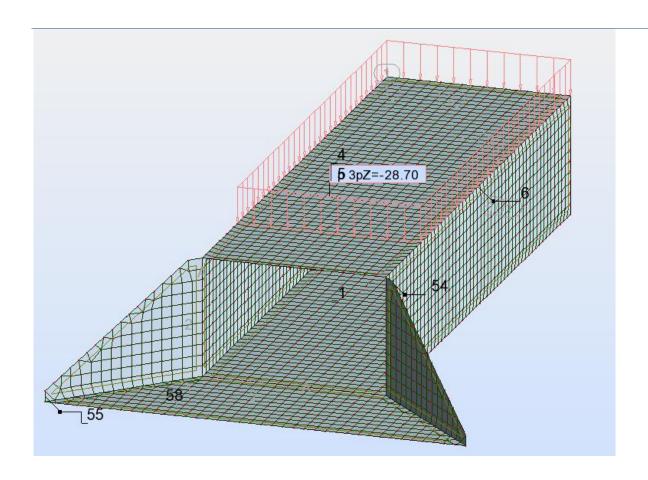

Liste par diamètres:

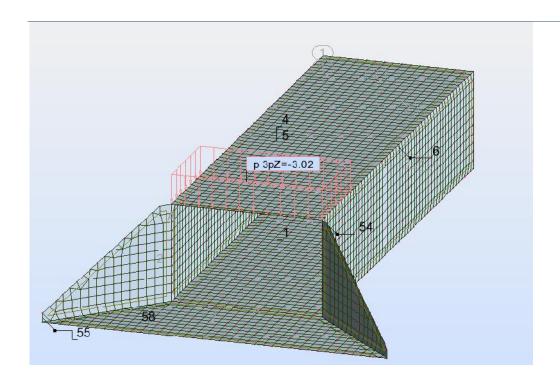

C)- DALOT 3x2

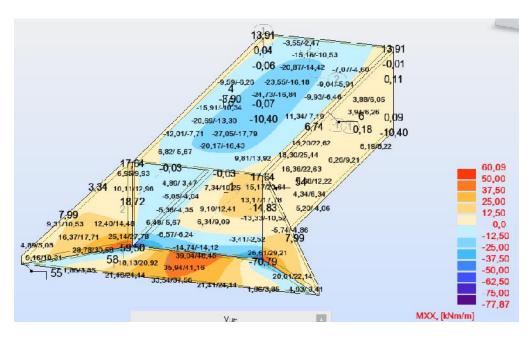
MODELISATION

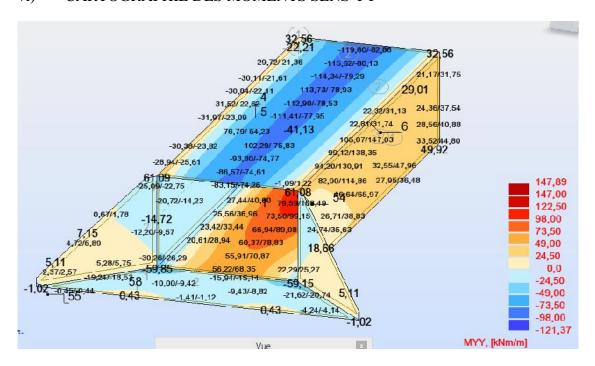


ii) MODELISATION SOUS REMBLAI ET POUSSEE DES TERRES




ii) MODELISATION SOUS SURCHARGE SUR REMBLAI


iii) MODELISATION SOUS SURCHAGE DU AU SYSTEME Bt


iV) MODELISATION SOUS SURCHAGE SUR TROTTOIR

V) CARTOGRAPHIE DES MOMENTS SENS XX

vi) CARTOGRAPHIE DES MOMENTS SENS YY

Vii CALCUL DU TABLIER

1. Dalle: Dalle4 - panneau n° 4

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,45 (m)

Contour:

bord	début	fin	longu		
	x1	y1	x2	y2	(m)
1	0,00	-3,40	10,50	-3,40	10,50
2	10,50	-3,40	10,50	0,00	3,40
3	10,50	0,00	0,00	0,00	10,50
4	0,00	0,00	0,00	-3,40	3,40

Appui:

n° Nom dimensions coordonnées bord

(m) x y

0 linéaire 0,30 / 10,50 5,25 0,00 —

0 linéaire 0,30 / 10,50 5,25 -3,40 —

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

3,14 3,14 7,85 13,99

Ferraillage théorique modifié (cm2/m):

1,78 2,87 6,47 13,65

Ferraillage théorique primaire (cm2/m):

1,78 2,87 6,47 13,65

Coordonnées (m):

0,00;0,00 7,00;-1,60 10,50;-3,40 0,20;-1,80

1.5.2. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

^{* -} présence du chapiteau

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	1,78/3,14	0,05/3,14	0,42/3,14	0,01/3,14
Ax(-) (cm2/m)	0,62/3,14	2,87/3,14	1,82/3,14	0,66/3,14
Ay(+) (cm2/m)	3,38/3,93	0,27/3,93	6,47/7,85	0,29/3,93
Ay(-) (cm2/m)	2,06/13,99	11,94/13,99	0,06/13,99	13,65/13,99

ELS

Mxx (kN*m/m)	14,37 -28,14-18,05-2,71				
Myy (kN*m/m)	29,29 -107,63	60,27 -123,72			
Mxy (kN*m/m)	3,58 0,49 -2,14	-0,75			

ELU

Mxx (kN*m/m)	14,37 -28,14-18,0	5-2,71
Myy (kN*m/m)	29,29 -107,63	60,27 -123,72
Mxy (kN*m/m)	3,58 0,49 -2,14	-0,75

Coordonnées (m) 0,00;0,00 7,00;-1,60 10,50;-3,40 0,20;-1,80 Coordonnées* (m) 3,40;10,50;2,20 1,80;3,50;2,20 0,00;0,00;2,20 1,60;10,30;2,20

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

^{* -} Coordonnées dans le repère global de la structure

$$|f(-)| = 2.5 \text{ (cm)} \ll fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58	PZ N	Moins
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=5,20[m] Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=5,20[m] Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=5,20[m] Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=5,20[m] Direction=-Z
2	(EF) surfacique uniforme 6	PX=-9),47[kN/m2]
2	(EF) surfacique uniforme 5	PX=9	,47[kN/m2]
2	(EF) surfacique uniforme 54	PX=-9	9,47[kN/m2]
2	(EF) surfacique uniforme 55	PX=9	,47[kN/m2]
3 P3(3.	(EF) surfacique 3p (contour) 4, 10.5, 2.2) P4(0, 10.5, 2.2)	4	PZ1=-28,70[kN/m2] P1(0, 2, 2.2) P2(3.4, 2, 2.2)
14	(EF) surfacique uniforme 4	PZ=	-60,00[kN/m2]
8 P3(3.	(EF) surfacique 3p (contour) 4, 2, 2.2) P4(0, 2, 2.2)	4	PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(3.4, 0, 2.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00 ELS/10 (1+3+8+14)*1.00 ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 688,56
- 2 731,31
- 3 736,60
- 4 773,11
- 5 783,84
- 6 784,24
- 7 804,22
- 8 836,25
- 9 861,34
- 10 953,34

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom	coord	donnee	es	Armatures adoptees			At Ar					
	x1	y1	x2	y2	φ [mm	n] / [cm	n]	[cm2/	m]	[cm2/	m]	
1/1- A	Ax Prin	cipal	0,00	-3,40	10,50	0,00	10,0 /	25,0	2,87	<	3,14	
1/2- <i>A</i>	Ay Peri	pendici	ulaire	0,00	-3,40	10,50	0,00	14,0 /	11,0	13,65	<	13,99

Ferraillage supérieur

Nom coordonnées		Armatures adoptées			At	Ar							
	x1	y1	x2	y2	φ [mm	n] / [cm	1]	[cm2/	/m]	[cm2	/m]		
1/1+	Ax Pri	ncipal	0,00	-3,40	10,50	0,00	10,0/	25,0	1,78	<	3,14		
1/2+(1/4+)	Ay Perp	pendic	ulaire	8,59	-3,40	10,50	-2,55	10,0 /	10,0	6,47	<	7,85
1/3+(1/4+)	Ay Perp	pendic	ulaire	8,59	-0,85	10,50	0,00	10,0 /	10,0	6,47	<	7,85
1/4+	Ay Pe	rpendic	ulaire	0,00	-3,40	10,50	0,00	10,0 /	20,0	3,38	<	3,93	

4. Quantitatif

Volume de Béton = 16,07 (m3)

Surface de Coffrage = 35,70 (m2)

Périmètre de la dalle = 27,80 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 661,27 (kG)

Densité = 41,16 (kG/m3)

Diamètre moyen = 11,7 (mm)

Liste par diamètres:

Vii CALCUL DU RADIER

1. Dalle: Dalle1 - panneau n° 1

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,45 (m)

Contour:

bord	début	fin	longueur				
	x1	y1	x2	y2	(m)		
1	0,00	3,40	10,50	3,40	10,50		
2	10,50	3,40	10,50	0,00	3,40		
3	10,50	0,00	0,00	0,00	10,50		
4	0,00	0,00	0,00	3,40	3,40		

Appui:

n°	Nom	n dimensions coordonnées						
		(m)	X	у				
0	linéaiı	re	0,30 /	10,50	5,25	0,00	_	
0	linéair	re	0,30 /	10,50	5,25	3,40	_	

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

3,14 11,22 17,10 7,14

Ferraillage théorique modifié (cm2/m):

2,59 8,32 16,46 6,40

Ferraillage théorique primaire (cm2/m):

2,59 8,32 16,46 6,40

Coordonnées (m):

8,00;1,80 0,00;-0,00 10,40;1,60 10,50;3,40

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	2,59/3,14	0,29/3,14	0,60/3,14	1,10/3,14
Ax(-) (cm2/m)	0,05/5,61	8,32/11,22	0,01/5,61	2,08/5,61
Ay(+) (cm2/m)	14,23/17,10	0,00/8,55	16,46/17,10	1,35/17,10
Ay(-) (cm2/m)	0,26/3,57	6,16/7,14	0,27/3,57	6,40/7,14

ELS

Mxx (kN*m/m) 25,46 -77,871,73 -14,75 Myy (kN*m/m) 128,73 -57,03147,89 -55,06 109 Mxy (kN*m/m) 0,61 3,33 -0,92 5,53

ELU

Mxx (kN*m/m) 25,46 -77,871,73 -14,75

Myy (kN*m/m) 128,73 -57,03147,89 -55,06

Mxy (kN*m/m) 0,61 3,33 -0,92 5,53

Coordonnées (m) 8,00;1,80 0,00;-0,00 10,40;1,60 10,50;3,40

Coordonnées* (m) 1,60;8,00;0,00 3,40;0,00;0,00 1,80;10,40;0,00 0,00;10,50;0,00

* - Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 2.3 \text{ (cm)} <= fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

1

Cas Type Liste Valeur

poids propre 1 4A6 54 55 58

1	(EF) pression hydrostatique	e 6	Gamma=-6,60[kG/m3] H=5,20[m]	Direction=-Z

PZ Moins

1 (EF) pression hydrostatique 54 Gamma=-6,60[kG/m3] H=5,20[m] Direction=-Z

- 1 (EF) pression hydrostatique Gamma=-6,60[kG/m3] H=5,20[m] Direction=-Z 55
- 2 (EF) surfacique uniforme PX=-9,47[kN/m2]6
- 2 (EF) surfacique uniforme 5 PX=9,47[kN/m2]
- 2 (EF) surfacique uniforme PX=-9,47[kN/m2]54
- 2 (EF) surfacique uniforme 55 PX=9,47[kN/m2]
- 3 PZ1=-28,70[kN/m2] P1(0, 2, 2.2) P2(3.4, 2, 2.2) (EF) surfacique 3p (contour) P3(3.4, 10.5, 2.2) P4(0, 10.5, 2.2)
- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(3.4, 0, 2.2) P3(3.4, 2, 2.2) P4(0, 2, 2.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 838,52
- 2 884,56
- 3 903,02
- 4 921,76
- 5 923,07

6	-	924,63
7	-	931,04
8	-	952,37
9	-	971,11
10	-	1112,94

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées			Arma	Armatures adoptées			At	Ar					
	x1	y1	x2	y2	φ [mm	n] / [cm	n]	[cm2/	m]	[cm2	/m]		
1/1-(1	/3-)	Ax Prin	cipal	0,00	0,00	0,95	0,85	10,0/	7,0	8,32	<	11,22	
1/2-(1	/3-)	Ax Prin	cipal	0,00	2,55	0,95	3,40	10,0 /	7,0	8,32	<	11,22	
1/3- <i>A</i>	Ax Pr	ncipal	0,00	0,00	10,50	3,40	10,0/	14,0	2,55	<	5,61		
1/4-(1	/6-)	Ay Per	pendicul	aire	0,00	0,00	10,50	0,85	10,0 /	11,0	6,40	<	7,14
1/5-(1	/6-)	Ay Per	pendicul	aire	0,00	2,55	10,50	3,40	10,0 /	11,0	6,40	<	7,14
1/6- A	Ау Ре	rpendi	culaire	0,00	0,00	10,50	3,40	10,0/	22,0	0,31	<	3,57	

Ferraillage supérieur

Nom coordonnées			Armatures adoptées			At	Ar						
	x1	y1	x2	y2	φ [mm	n] / [cm	n]	[cm2/	m]	[cm2	/m]		
1/1+	Ax Prir	ncipal	0,00	0,00	10,50	3,40	10,0/	25,0	2,59	<	3,14		
1/2+(1	1/3+) <i>A</i>	y Perp	endicu	ulaire	1,91	0,00	10,50	3,40	14,0 /	9,0	16,46	<	17,10
1/3+	Ay Per	pendic	ulaire	0,00	0,00	10,50	3,40	14,0 /	18,0	8,03	<	8,55	

4. Quantitatif

Volume de Béton = 16,07 (m3)

Surface de Coffrage = 35,70 (m2)

Périmètre de la dalle = 27,80 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 855,80 (kG)

Densité = 53,27 (kG/m3)

Diamètre moyen = 11,4 (mm)

Liste par diamètres:

Viii CALCUL DU PIEDROIT

1. Dalle: Dalle6 - panneau n° 6

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3,0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,30 (m)

Contour:

bord	début	fin	longu		
	x1	y1	x2	y2	(m)
1	0,00	-2,20	10,50	-2,20	10,50
2	10,50	-2,20	10,50	0,00	2,20
3	10,50	0,00	0,00	0,00	10,50
4	0,00	0,00	0,00	-2,20	2,20

Appui:

n°	Nom dimensions coordonnées							
		(m)	x	у				
0	linéair	е	2,20 /	0,30	0,00	-1,10	_	
0	linéair	е	0,45 /	10,50	5,25	-2,20	_	
0	linéair	е	0,45 /	10,50	5,25	0,00	_	

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

3,14 3,14 12,57 12,57

Ferraillage théorique modifié (cm2/m):

2,04 3,03 9,07 0,79

Ferraillage théorique primaire (cm2/m):

2,04 3,03 9,07 0,77

Coordonnées (m):

0,00;-2,20 0,00;-1,00 10,10;-2,20 0,60;-0,80

1.5.2. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	2,04/3,14	0,35/3,14	1,69/3,14	0,49/3,14
Ax(-) (cm2/m)	0,11/3,14	3,03/3,14	0,00/3,14	0,46/3,14
Ay(+) (cm2/m)	8,88/12,57	1,19/12,57	9,07/12,57	2,61/12,57
Ay(-) (cm2/m)	0,01/12,57	0,30/12,57	0,00/12,57	0,79/12,57

ELS

Mxx (kN*m/m)	12,58 -18,72	28,72	1,81
Myy (kN*m/m)	50,17 4,55	49,92	14,01

Mxy (kN*m/m) 1,22 -0,54 -2,82 1,80

ELU

Coordonnées (m) 0,00;-2,20 0,00;-1,00 10,10;-2,20 0,60;-0,80 Coordonnées* (m) 3,40;0,00;0,00 3,40;0,00;1,20 3,40;10,10;0,00

3,40;0,60;1,40

* - Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.1 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 0.0 \text{ (cm)} <= fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1 poids propre 1 4A6 54 55 58 PZ Moins

1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=5,20[m] Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=5,20[m] Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=5,20[m] Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=5,20[m]
2	(EF) surfacique uniforme 6	PX=-9	9,47[kN/m2]
2	(EF) surfacique uniforme 5	PX=9	.47[kN/m2]
2	(EF) surfacique uniforme 54	PX=-9	9,47[kN/m2]
2	(EF) surfacique uniforme 55	PX=9	.47[kN/m2]
3 P3(3.	(EF) surfacique 3p (contour) 4, 10.5, 2.2) P4(0, 10.5, 2.2)	4	PZ1=-28,70[kN/m2] P1(0, 2, 2.2) P2(3.4, 2, 2.2)
14	(EF) surfacique uniforme 4	PZ=	-60,00[kN/m2]
8 P3(3.	(EF) surfacique 3p (contour) 4, 2, 2.2) P4(0, 2, 2.2)	4	PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(3.4, 0, 2.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 438,63

2 - 444,96

3	-	445,39
4	-	466,87
5	-	466,87
6	-	488,78
7	-	495,11
8	-	499,89
9	_	554,81

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées			Arma	Armatures adoptées			At	Ar					
	x 1	y1	x2	y2	φ [mm] / [cm]	[cm2/	m]	[cm2/	/m]		
1/1- /	Ax Prir	cipal	0,00	-2,20	10,50	0,00	10,0/	25,0	3,03	<	3,14		
1/2-(1	/5-) A	y Perpe	endicul	aire	0,00	-2,20	0,95	0,00	12,0 /	9,0	0,79	<	12,57
1/3-(1	/5-) A	y Perpe	endicul	aire	0,95	-0,73	1,91	0,00	12,0 /	9,0	0,61	<	12,57
1/4-(1	/5-) A	y Perpe	endicul	aire	5,73	-2,20	10,50	-0,73	12,0 /	9,0	0,53	<	12,57
1/5- /	Av Per	pendicu	ılaire	0.00	-2.20	10.50	0.00	12.0 /	18.0	0.61	<	6.28	

Ferraillage supérieur

Nom	coord	donnée	S	Arma	tures a	adopté	es	At	Ar				
	x1	y1	x2	y2	φ [mm	n] / [cm	1]	[cm2/	/m]	[cm2/	/m]		
1/1+	Ax Prir	ncipal	0,00	-2,20	10,50	0,00	10,0/	25,0	2,04	<	3,14		
1/2+(1	1/5+) <i>A</i>	Ay Perp	endicu	ılaire	0,00	-2,20	0,95	0,00	12,0 /	9,0	8,88	<	12,57
1/3+(1	1/5+) <i>A</i>	Ay Perp	endicu	ılaire	0,95	-0,73	1,91	0,00	12,0 /	9,0	6,47	<	12,57

1/4+(1/5+) Ay Perpendiculaire 5,73 -2,20 10,50 -0,73 12,0 / 9,0 9,07 < 12,57

1/5+ Ay Perpendiculaire 0,00 -2,20 10,50 0,00 12,0 / 18,0 5,97 < 6,28

4. Quantitatif

Volume de Béton = 6,93 (m3)

Surface de Coffrage = 23,10 (m2)

Périmètre de la dalle = 25,40 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 435,15 (kG)

Densité = 62,79 (kG/m3)

Diamètre moyen = 11,5 (mm)

Liste par diamètres:

IX CALCUL DU MUR EN AILE

1. Dalle: Dalle54 - panneau n° 54

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3,0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,30 (m)

Contour:

bord	début fin		longu			
	x1	y1	x2	y2		(m)
1	-0,00	-3,11	2,20	-3,11	2,20	
2	2,20	-3,11	2,20	-2,83	0,28	
3	2,20	-2,83	0,20	-0,00	3,46	
4	0,20	-0,00	-0,00	-0,00	0,20	
5	-0,00	-0,00	-0,00	-3,11	3,11	

Appui:

n°	Nom	dime	dimensions coordonnées							
		(m)	X	у						
0	linéai	re	3,11	/ 0,40	0,00	-1,56	_			
0	linéai	re	0,30	/ 2,20	1,10	-3,11	_			

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Ferraillage réelle (cm2/m):

15,71 3,14 5,24 6,54

Ferraillage théorique modifié (cm2/m):

10,60 0,59 3,52 4,10

Ferraillage théorique primaire (cm2/m):

10,60 0,59 3,52 4,10

Coordonnées (m):

-0,00;-3,11 2,20;-2,83 -0,00;-3,11 2,20;-3,11

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	10,60/15,71	0,99/3,93	10,60/15,71	3,42/3,93
Ax(-) (cm2/m)	0,20/3,14	0,59/3,14	0,20/3,14	0,59/3,14
Ay(+) (cm2/m)	3,52/5,24	0,21/5,24	3,52/5,24	0,82/5,24
Ay(-) (cm2/m)	0,13/6,54	1,94/6,54	0,13/6,54	4,10/6,54

ELS

Mxx (kN*m/m)	59,36	-1,08	59,36	17,64
Myy (kN*m/m)	17,89	-5,25	17,89	-19,52
Mxy (kN*m/m)	-3,01	-3,58	-3,01	-8,71 123

ELU

Mxx (kN*m/m)	59,36 -1,08 59,36 17,64
Myy (kN*m/m)	17,89 -5,25 17,89 -19,52
Mxy (kN*m/m)	-3,01 -3,58 -3,01 -8,71

Coordonnées (m) -0,00;-3,11 2,20;-2,83 -0,00;-3,11 2,20;-3,11 Coordonnées* (m) 3,40;0,00;0,00 3,60;-0,20;2,20 3,40;0,00;0,00 3,40;0,00;2,20

* - Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.4 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 0.0 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58	PZ M	loins	
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=5,20[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=5,20[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=5,20[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=5,20[m]	Direction=-Z

- 2 (EF) surfacique uniforme 6 PX=-9,47[kN/m2]
- 2 (EF) surfacique uniforme 5 PX=9,47[kN/m2]
- 2 (EF) surfacique uniforme 54 PX=-9,47[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=9,47[kN/m2]
- 3 (EF) surfacique 3p (contour) 4 PZ1=-28,70[kN/m2] P1(0, 2, 2.2) P2(3.4, 2, 2.2) P3(3.4, 10.5, 2.2) P4(0, 10.5, 2.2)
- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(3.4, 0, 2.2) P3(3.4, 2, 2.2) P4(0, 2, 2.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 59,88

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

No	m	coord	donnée	es	Arma	tures a	adopté	es	At	Ar					
		x1	y1	x2	y2	φ [mn	n] / [cm	n]	[cm2/	m]	[cm2	/m]			
1/1	- /	Ax Prin	cipal	-0,00	-3,11	2,20	-0,00	10,0/	25,0	0,59	<	3,14			
1/2	-(1	/3-) A	y Perpe	endicul	aire	0,20	-3,11	2,20	-2,83	10,0 /	12,0	4,10	<	6,54	
1/3	- /	Ay Per	pendicu	ulaire	-0,00	-3,11	2,20	-0,00	10,0 /	24,0	2,81	<	3,27		

Ferraillage supérieur

Nom	COOI	rdonnée	es	Arma	tures a	adopté	es	At	Ar			
	x1	у1	x2	y2	φ [mn	n] / [cn	ո]	[cm2/	/m]	[cm2/	/m]	
1/1+(1/3+)	Ax Prin	cipal	-0,00	-3,11	0,20	-1,89	10,0 /	5,0	10,60	<	15,71
1/2+(1	1/3+)	Ax Prin	cipal	-0,00	-3,11	1,20	-0,94	10,0 /	10,0	6,94	<	7,85
1/3+	Ax Pr	incipal	-0,00	-3,11	2,20	-0,00	10,0/	20,0	3,73	<	3,93	
1/4+	Ау Ре	erpendic	ulaire	-0,00	-3,11	2,20	-0,00	10,0 /	15,0	3,52	<	5,24
_	_											

4. Quantitatif

Volume de Béton = 1,20 (m3)

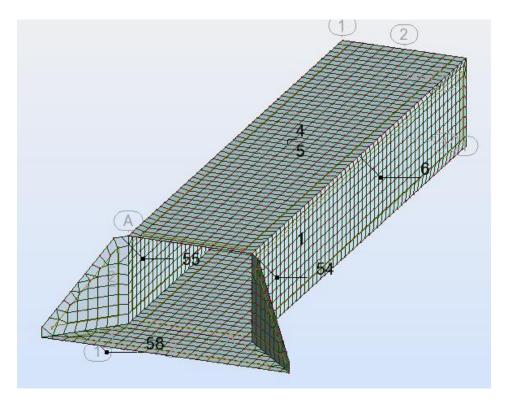
Surface de Coffrage = 4,02 (m2)

Périmètre de la dalle = 9,26 (m)

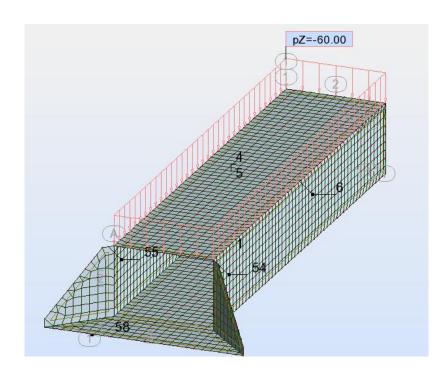
Superficie des réservations = 0,00 (m2)

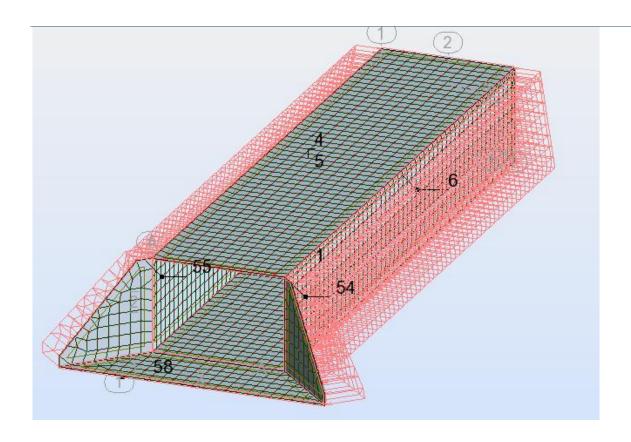
Acier HA 500

Poids total = 59,86 (kG)

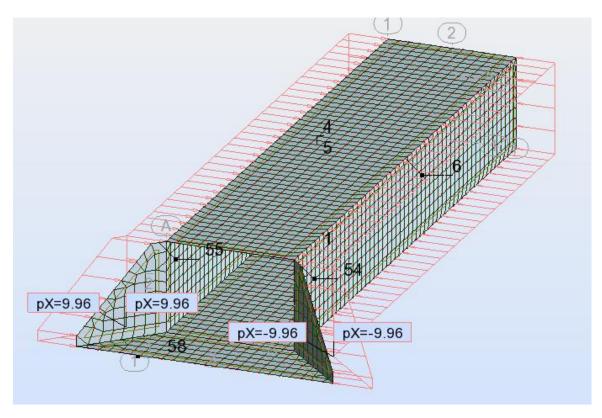

Densité = 49,68 (kG/m3)

Diamètre moyen = 10,0 (mm)

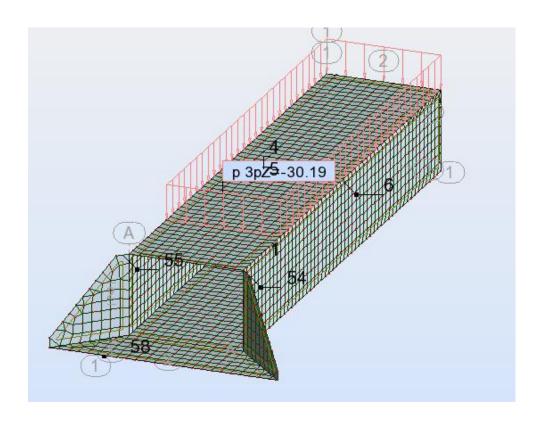

Liste par diamètres:

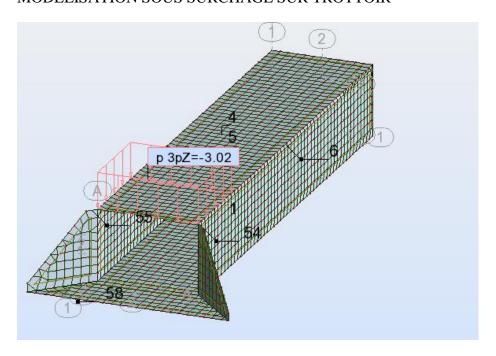

D)- DALOT 2x1,5

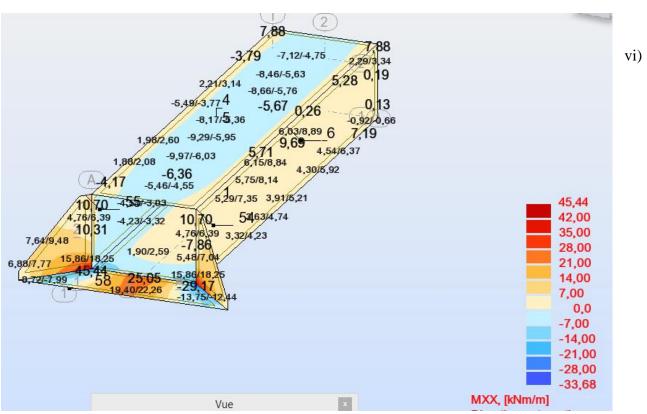
MODELISATION

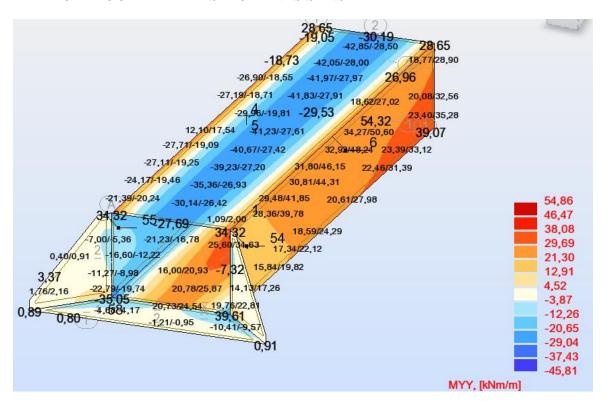


ii) MODELISATION SOUS REMBLAI ET POUSSEE DES TERRES




ii) MODELISATION SOUS SURCHARGE SUR REMBLAI


iii) MODELISATION SOUS SURCHAGE DU AU SYSTEME Bt


iV) MODELISATION SOUS SURCHAGE SUR TROTTOIR

V) CARTOGRAPHIE DES MOMENTS SENS XX

CARTOGRAPHIE DES MOMENTS SENS YY

Vii CALCUL DU TABLIER

1. Dalle: Dalle4 - panneau n° 4

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,30 (m)

Contour:

bord	début fin		longu			
	x1	y1	x2	y2	(r	n)
1	0,00	-2,40	10,50	-2,40	10,50	
2	10,50	-2,40	10,50	0,00	2,40	
3	10,50	0,00	0,00	0,00	10,50	
4	0,00	0,00	0,00	-2,40	2,40	

Appui:

n°	Nom d	dimensions coordonnées							
	(r	n)	X	y					
0	linéaire		0,25 /	10,50	5,25	-2,40	_		
0	linéaire		0,25 /	10,50	5,25	0,00	_		

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

3,14 3,14 5,61 18,85

Ferraillage théorique modifié (cm2/m):

1,72 1,99 5,52 9,68

Ferraillage théorique primaire (cm2/m):

1,72 1,99 5,52 9,68

Coordonnées (m):

0,00;-2,40 7,60;-1,20 10,50;-2,40 0,00;-1,20

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	1,72/3,14	0,05/3,14	0,78/3,14	0,01/3,14
Ax(-) (cm2/m)	0,64/3,14	1,99/3,14	0,96/3,14	0,33/3,14
Ay(+) (cm2/m)	3,93/5,61	0,22/5,61	5,52/5,61	0,24/5,61
Ay(-) (cm2/m)	1,43/9,42	8,39/9,42	0,13/9,42	9,68/18,85

ELS

Mxx (kN*m/m) 8,81 -12,44-6,03 -0,55 Myy (kN*m/m) 21,34 -46,7531,69 -54,42 Mxy (kN*m/m) -2,25 0,00 -1,81 0,00 133

ELU

Mxx (kN*m/m)	8,81	-12,44	-6,03	-0,55
Myy (kN*m/m)	21,34	-46,75	31,69	-54,42
Mxy (kN*m/m)	-2,25	0.00	-1,81	0.00

Coordonnées (m) 0,00;-2,40 7,60;-1,20 10,50;-2,40 0,00;-1,20 Coordonnées* (m) 0,00;10,50;1,70 1,20;2,90;1,70 0,00;0,00;1,70 1,20;10,50;1,70

* - Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 2.0 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58	PZ I	Moins	
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z

- 2 (EF) surfacique uniforme 6 PX=-9,96[kN/m2]
- 2 (EF) surfacique uniforme 5 PX=9,96[kN/m2]
- 2 (EF) surfacique uniforme 54 PX=-9,96[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=9,96[kN/m2]
- 3 (EF) surfacique 3p (contour) 4 PZ1=-30,19[kN/m2] P1(0, 2, 1.7) P2(2.4, 2, 1.7) P3(2.4, 10.5, 1.7) P4(0, 10.5, 1.7)
- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 1.7) P2(2.4, 0, 1.7) P3(2.4, 2, 1.7) P4(0, 2, 1.7)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 427,51
- 2 428,40
- 3 429,63
- 4 442,35
- 5 454,86
- 6 457,87

7 - 482,43

8 - 483,10

9 - 491,19

10 - 561,71

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées Ar		Arma	matures adoptées		At	Ar								
	x1	y1	x2	y2	φ [mm	n] / [cm]	[cm2/	m]	[cm2/	/m]			
1/1- /	Ax Prin	cipal	0,00	-2,40	10,50	0,00	10,0/	25,0	1,99	<	3,14			
1/2-(1	/3-) Ay	y Perpe	endicul	aire	0,00	-1,60	0,95	-0,80	12,0 /	6,0	9,68	<	18,85	
1/3- /	Ay Perp	pendicu	ılaire	0,00	-2,40	10,50	0,00	12,0 /	12,0	9,27	<	9,42		

Ferraillage supérieur

Nom coordonnées		Arma	Armatures adoptées			At Ar						
	x1	y1	x2	y2	φ [mm] / [cm	1]	[cm2/	m]	[cm2	/m]		
1/1+	Ax Prir	ncipal	0,00	-2,40	10,50 0,00	10,0/	25,0	1,72	<	3,14		
1/2+	Av Per	pendic	ulaire	0.00	-2.40 10.50	0.00	10.0 /	14.0	5.52	<	5.61	

4. Quantitatif

Volume de Béton = 7,56 (m3)

Surface de Coffrage = 25,20 (m2)

Périmètre de la dalle = 25,80 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 403,62 (kG)

Densité = 53,39 (kG/m3)

Diamètre moyen = 10.8 (mm)

Liste par diamètres:

Diamètre Longueur Nombre:

(m)

10 2,34 75

10 10,44 16

12 1,86 7

12 2,34 87

Vii CALCUL DU RADIER

1. Dalle: Dalle1 - panneau n° 1

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 0 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début	fin	longueur					
	x1	y1	x2	y2	(m)			
1	0,00	2,40	10,50	2,40	10,50			
2	10,50	2,40	10,50	0,00	2,40			
3	10,50	0,00	0,00	0,00	10,50			
4	0,00	0,00	0,00	2,40	2,40			

Appui:

n°	Nom	dime	bord				
		(m)	X	у			
0	linéair	е	0,25 /	10,50	5,25	2,40	_
0	linéair	е	0,25 /	10,50	5,25	0,00	

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

2,01 6,41 12,57 10,05

Ferraillage théorique modifié (cm2/m):

1,92 6,15 12,35 9,66

Ferraillage théorique primaire (cm2/m):

1,92 6,15 12,35 9,66

Coordonnées (m):

8,60;1,20 0,00;-0,00 10,50;1,20 10,50;2,40

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	1,92/2,01	0,00/0,00	0,25/2,01	0,76/2,01
Ax(-) (cm2/m)	0,00/6,41	6,15/6,41	0,00/0,00	2,26/6,41
Ay(+) (cm2/m)	11,02/12,57	0,00/0,00	12,35/12,57	0,00/0,00
Ay(-) (cm2/m)	0,00/10,05	8,33/10,05	0,00/10,05	9,66/10,05

ELS

Mxx (kN*m/m)	9,69	-26,42	20,34	-8,46
Myy (kN*m/m)	48,74	-34,68	354,32	-42,25
Mxy (kN*m/m)	0,00	3,68	0,00	2,16

Coordonnées (m) 8,60;1,20 0,00;-0,00 10,50;1,20 10,50;2,40 Coordonnées* (m) 1,20;8,60;0,00 2,40;0,00;0,00 1,20;10,50;0,00 0,00;10,50;0,00

^{* -} Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 1.9 \text{ (cm)} <= fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

1

Cas Type Liste Valeur

poids propre 1 4A6 54 55 58

4	(FF)	0	0.001.0/01.1.4.70[]	D'
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z

PZ Moins

Combinaison / Composante Définition

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 614,33

2 - 668,78

3 - 696,39

4 - 718,52

5 - 737,83

6 - 765,91

7 - 827,36

8 - 855,43

9 - 994,69

10 - 1554,21

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

nom coordonnees			Armatures adoptees			At	Ar					
	x1	y 1	x2	y2	φ [mm	n] / [cm	n]	[cm2/	'm]	[cm2	/m]	
1/1-	Ax Prin	cipal	0,00	0,00	10,50	2,40	14,0/	24,0	6,15	<	6,41	
1/2-	Ay Per	pendicı	ulaire	0,00	0,00	10,50	2,40	16,0 /	20,0	9,66	<	10,05

Ferraillage supérieur

Nom coordonnées Armatures adoptées At Ar

x1 y1 x2 y2 \(\phi \) [mm] / [cm] [cm2/m] [cm2/m]

1/1+ Ax Principal 0,00 0,00 10,50 2,40 8,0 / 25,0 1,92 < 2,01

1/2+ Ay Perpendiculaire 0,00 0,00 10,50 2,40 20,0 / 25,0 12,35 < 12,57

4. Quantitatif

Volume de Béton = 6,30 (m3)

Surface de Coffrage = 25,20 (m2)

Périmètre de la dalle = 25,80 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 605,68 (kG)

Densité = 96,14 (kG/m3)

Diamètre moyen = 14,5 (mm)

Liste par diamètres:

Diamètre Longueur Nombre:

(m)

8 10,44 10

14 10,44 10

16 2,34 53

20 2,34 42

Viii CALCUL DU PIEDROIT

1. Dalle: Dalle5 - panneau n° 5

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début fin		longu		
	x1	y1	x2	y2	(m)
1	0,00	-1,70	10,50	-1,70	10,50
2	10,50	-1,70	10,50	0,00	1,70
3	10,50	0,00	0,00	0,00	10,50
4	0.00	0.00	0,00	-1,70	1,70

Appui:

n°	Nom dimensions coordonnées					
	(m)	X	y			
0	linéaire	0,25 /	10,50	5,25	-1,70	_
0	linéaire	1,70 /	0,25	0,00	-0,85 145	

0 linéaire 0,30 / 10,50 5,25 0,00 —

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

Ferraillage théorique modifié (cm2/m):

Ferraillage théorique primaire (cm2/m):

Coordonnées (m):

1.5.2. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Symboles: section théorique/section réelle

Ax(+) (cm2/m) **1,95/3,14** 0,00/0,00 0,04/3,14 0,49/3,14

Ax(-) (cm2/m) 0,25/3,14 **2,45/3,14** 0,43/3,14 1,48/3,14

^{* -} présence du chapiteau

Ay(+) (cm2/m)	0,31/12,57	0,06/12,57	0,53/12,57	0,06/12,57
Ay(-) (cm2/m)	1,64/12,57	9,07/12,57	6,97/12,57	9,42/12,57

ELS

Mxx (kN*m/m)	9,78 -11,56-0,39 -5,64
Myy (kN*m/m)	-5,28 -40,36-29,02-40,85
Mxy (kN*m/m)	-0,45 -1,41 -0,20 2,77

ELU

Mxx (kN*m/m)	9,78 -11,56-0,39 -5,64
Myy (kN*m/m)	-5,28 -40,36-29,02-40,85
Mxy (kN*m/m)	-0,45 -1,41 -0,20 2,77

Coordonnées (m) 0,00;-0,76 0,00;-1,70 10,40;-0,90 10,30;-1,70 Coordonnées* (m) 0,00;0,00;0,94 0,00;0,00;0,00 0,00;10,40;0,80 0,00;10,30;0,00

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

 $|f(-)| = 0.1 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$

2. Chargements:

^{* -} Coordonnées dans le repère global de la structure

Cas Type Liste Valeur

1 poids propre	1 4A6 54 55 58	PZ Moins
----------------	----------------	----------

- 1 (EF) pression hydrostatique 6 Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z
- 1 (EF) pression hydrostatique 5 Gamma=6,60[kG/m3] H=4,70[m] Direction=-Z
- 1 (EF) pression hydrostatique 54 Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z
- 1 (EF) pression hydrostatique 55 Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z
- 2 (EF) surfacique uniforme 6 PX=-9,96[kN/m2]
- 2 (EF) surfacique uniforme 5 PX=9,96[kN/m2]
- 2 (EF) surfacique uniforme 54 PX=-9,96[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=9,96[kN/m2]
- 3 (EF) surfacique 3p (contour) 4 PZ1=-30,19[kN/m2] P1(0, 2, 1.7) P2(2.4, 2, 1.7) P3(2.4, 10.5, 1.7) P4(0, 10.5, 1.7)
- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 1.7) P2(2.4, 0, 1.7) P3(2.4, 2, 1.7) P4(0, 2, 1.7)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 360,29
- 2 365,96
- 3 371,64
- 4 385,34
- 5 385,34
- 6 399,04
- 7 404,72
- 8 411,07
- 9 450,51

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom	coord	lonnée	S	Arma	tures a	dopté	es	At	Ar					
	x 1	y1	x2	y2	φ [mm] / [cm]	[cm2/	m]	[cm2/	m]			
1/1- /	Ax Prin	cipal	0,00	-1,70	10,50	0,00	10,0/	25,0	2,45	<	3,14			
1/2-(1	/4-) Ay	y Perpe	endicul	aire	0,00	-1,70	10,50	-0,85	12,0 /	9,0	9,42	<	12,57	
1/3-(1	/4-) Ay	y Perpe	endicul	aire	9,55	-0,85	10,50	0,00	12,0 /	9,0	6,57	<	12,57	
1/4- /	Ay Perp	pendicu	ılaire	0,00	-1,70	10,50	0,00	12,0 /	18,0	5,98	<	6,28		

Ferraillage supérieur

Nom	coord	donné	es	Arma	rmatures adoptées			At Ar			
	x1	y1	x2	y2	φ [mm] / [cn	n]	[cm2/	m]	[cm2	/m]	
1/1+	Ax Prir	ncinal	0.00	-1 70	10.50.0.00	10 0 /	25.0	1 95	<	3 14	

1/2+(1/4+) Ay Perpendiculaire 0,00 -1,70 10,50 -0,85 12,0 / 9,0 0,53 < 12,57

1/3+(1/4+) Ay Perpendiculaire 9,55 -0,85 10,50 0,00 12,0 / 9,0 0,53 < 12,57

1/4+ Ay Perpendiculaire 0,00 -1,70 10,50 0,00 12,0 / 18,0 0,51 < 6,28

4. Quantitatif

Volume de Béton = 4,46 (m3)

Surface de Coffrage = 17,85 (m2)

Périmètre de la dalle = 24,40 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 398,27 (kG)

Densité = 89,25 (kG/m3)

Diamètre moyen = 11,4 (mm)

Liste par diamètres:

IX CALCUL DU MUR EN AILE

1. Dalle: Dalle54 - panneau n° 54

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3,0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début fin		longu			
	x1	y1	x2	y2		(m)
1	-0,00	-1,70	1,70	-1,70	1,70	
2	1,70	-1,70	1,70	-1,41	0,28	
3	1,70	-1,41	0,20	0,00	2,06	
4	0,20	0,00	0,00	0,00	0,20	
5	0,00	0,00	-0,00	-1,70	1,70	

Appui:

n°	Nom	dime	nsion	s coor	donné	es	bord
		(m)	x	у			
0	linéai	re	0,25	/ 1,70	0,85	-1,70	
0	linéai	re	1,70	/ 0,25	0,00	-0,85	

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

13,09 3,14 3,93 3,14

Ferraillage théorique modifié (cm2/m):

9,84 1,23 3,07 2,65

Ferraillage théorique primaire (cm2/m):

9,84 1,23 3,07 2,65

Coordonnées (m):

-0,00;-1,70 1,00;-1,50 -0,00;-1,70 1,70;-1,70

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	9,84/13,09	2,14/6,54	9,84/13,09	2,14/3,27
Ax(-) (cm2/m)	0,38/3,14	1,23/3,14	0,38/3,14	0,44/3,14
Ay(+) (cm2/m)	3,07/3,93	0,41/3,93	3,07/3,93	0,49/3,93
Ay(-) (cm2/m)	0,04/0,00	0,99/3,14	0,04/0,00	2,65/3,14

ELS

Mxx (kN*m/m) 46,18 5,25 46,18 8,09 Myy (kN*m/m) 14,20 -4,77 14,20 -10,03 Mxy (kN*m/m) 0,36 -1,04 0,36 -4,56 153

ELU

Mxx (kN*m/m)	46,18	5,25	46,18	8,09
Myy (kN*m/m)	14,20	-4,77	14,20	-10,03
Mxy (kN*m/m)	0,36	-1,04	0,36	-4,56

Coordonnées (m) -0,00;-1,70 1,00;-1,50 -0,00;-1,70 1,70;-1,70

Coordonnées* (m) 2,40;0,00;0,00 2,54;-0,14;1,00 2,40;0,00;0,00 2,40;0,00;1,70

* - Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.2 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 0.0 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58	PZ I	Moins	
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z

- 2 (EF) surfacique uniforme 6 PX=-9,96[kN/m2]
- 2 (EF) surfacique uniforme 5 PX=9,96[kN/m2]
- 2 (EF) surfacique uniforme 54 PX=-9,96[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=9,96[kN/m2]
- 3 (EF) surfacique 3p (contour) 4 PZ1=-30,19[kN/m2] P1(0, 2, 1.7) P2(2.4, 2, 1.7) P3(2.4, 10.5, 1.7) P4(0, 10.5, 1.7)
- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 1.7) P2(2.4, 0, 1.7) P3(2.4, 2, 1.7) P4(0, 2, 1.7)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 23,79
- 2 25,46
- 3 26,59
- 4 26,63
- 5 27,75
- 6 28,01

7 - 29,13

8 - 29,42

9 - 36,65

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées			Armatures adoptées			At	Ar					
	x1	y1	x2	y2	φ [mm	n] / [cn	1]	[cm2/	m]	[cm2	/m]	
1/1- /	Ax Prin	cipal	-0,00	-1,70	1,70	0,00	10,0/	25,0	1,23	<	3,14	
1/2- /	Ay Perp	pendicu	ulaire	-0,00	-1,70	1,70	0,00	10,0 /	25,0	2,65	<	3,14

Ferraillage supérieur

Nom coordonnées			Arma	atures adoptées			At	Ar				
	x1	y1	x2	y2	φ [mm	n] / [cn	ո]	[cm2/	/m]	[cm2	/m]	
1/1+(1/3+)	Ax Prin	cipal	-0,00	-1,70	0,20	-0,71	10,0 /	6,0	9,84	<	13,09
1/2+(1/3+)	Ax Prin	cipal	-0,00	-1,70	0,95	0,00	10,0 /	12,0	5,52	<	6,54
1/3+	Ax Pri	incipal	-0,00	-1,70	1,70	0,00	10,0/	24,0	3,14	<	3,27	
1/4+	Ay Pe	rpendic	ulaire	-0,00	-1,70	1,70	0,00	10,0 /	20,0	3,07	<	3,93

4. Quantitatif

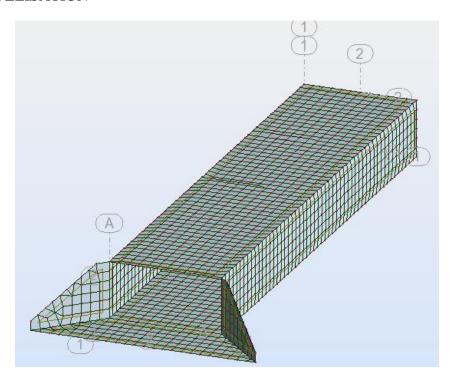
Volume de Béton = 0,46 (m3)

Surface de Coffrage = 1,82 (m2)

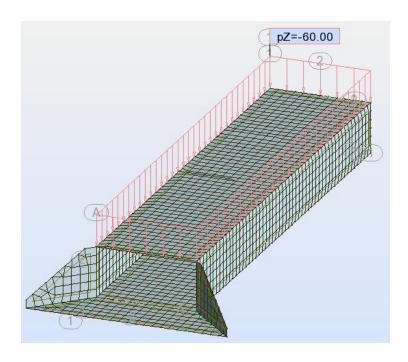
Périmètre de la dalle = 5,94 (m)

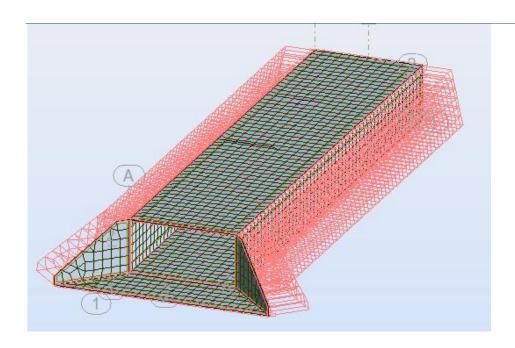
Superficie des réservations = 0.00 (m2)

Acier HA 500

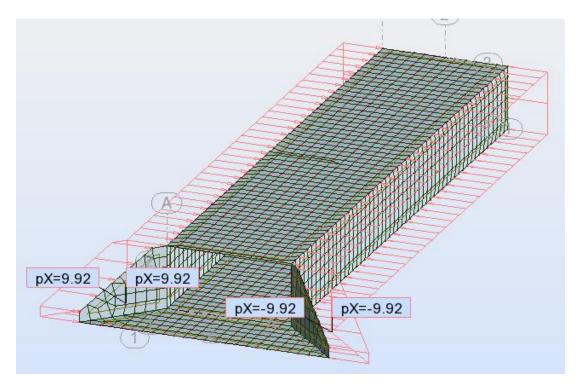

Poids total = 24,05 (kG)

Densité = 52,74 (kG/m3)

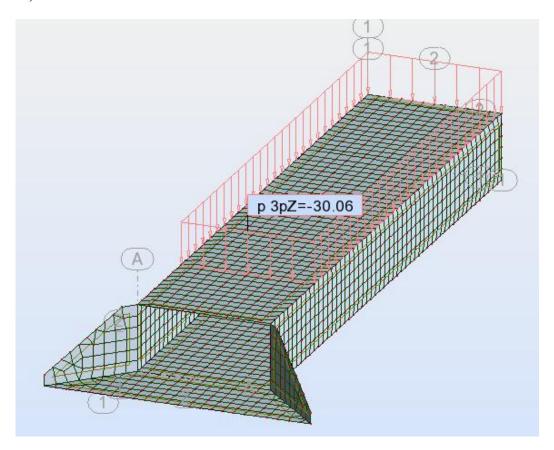

Diamètre moyen = 10,0 (mm)

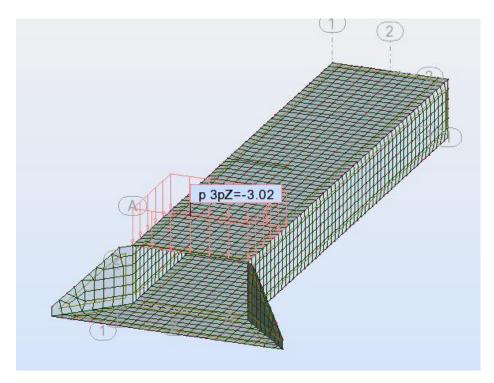

E)- DALOT 1.5x1

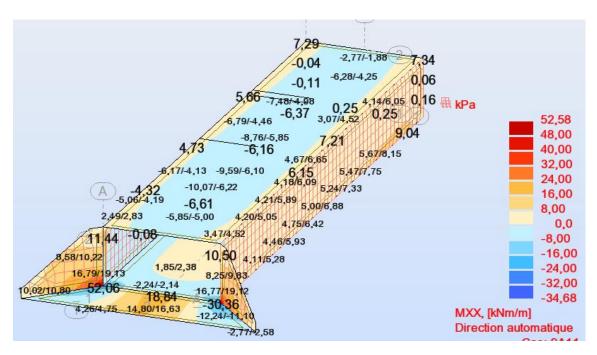
MODELISATION

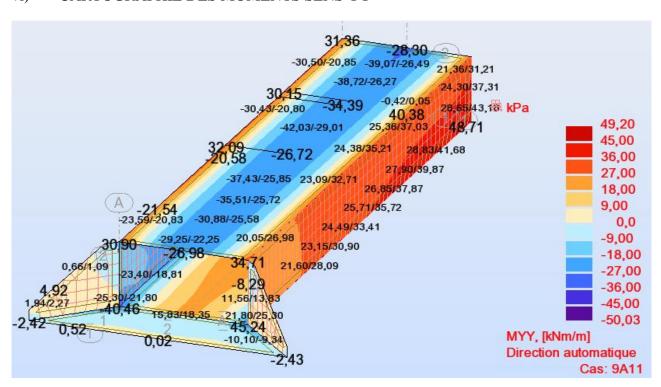


ii) MODELISATION SOUS REMBLAI ET POUSSEE DES TERRES




ii) MODELISATION SOUS SURCHARGE SUR REMBLAI


iii) MODELISATION SOUS SURCHAGE DU AU SYSTEME Bt


iV) MODELISATION SOUS SURCHAGE SUR TROTTOIR

V) CARTOGRAPHIE DES MOMENTS SENS XX

vi) CARTOGRAPHIE DES MOMENTS SENS YY

Vii CALCUL DU TABLIER

1. Dalle: Dalle4 - panneau n° 4

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3,0 (cm)

1.2. Béton

Classe : BETON; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début fin		longu				
	x1	y1	x2	y2	y2		
1	0,00	-2,40	10,50	-2,40	10,50		
2	10,50	-2,40	10,50	0,00	2,40		
3	10,50	0,00	0,00	0,00	10,50		
4	0,00	0,00	0,00	-2,40	2,40		

Appui:

n°	Nom dimensions coordonnées							
	(m)	x y	1					
0	linéaire	0,20 / 1	0,50 5,25 0,00	_				
0	linéaire	0,20 / 1	0,50 5,25 -2,40					

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Ferraillage réelle (cm2/m):

3,14 3,14 7,70 21,99

Ferraillage théorique modifié (cm2/m):

2,09 2,39 7,65 11,47

Ferraillage théorique primaire (cm2/m):

2,09 2,39 7,65 11,47

Coordonnées (m):

0,00;0,00 7,60;-1,20 10,50;0,00 0,00;-1,20

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	2,09/3,14	0,01/3,14	1,70/3,14	0,00/3,14
Ax(-) (cm2/m)	0,81/3,14	2,39/3,14	1,07/3,14	0,41/3,14
Ay(+) (cm2/m)	5,55/7,70	0,07/7,70	7,65/7,70	0,07/7,70
Av(-) (cm2/m)	0.94/11.00	10.00/11.00	0.13/11.00	11.47/21.99

ELS

Mxx (kN*m/m)	8,56	-12,02	:-5,25	-0,57
Myy (kN*m/m)	23,92	-43,76	34,16	-50,59
Mxv (kN*m/m)	2.19	-0.00	2.68	0.00

ELU

Mxx (kN*m/m)	8,56	-12,02	-5,25	-0,57
Myy (kN*m/m)	23,92	-43,76	34,16	-50,59
Mxv (kN*m/m)	2.19	-0.00	2.68	0.00

Coordonnées (m) 0,00;0,00 7,60;-1,20 10,50;0,00 0,00;-1,20 Coordonnées* (m) 2,40;10,50;1,20 1,20;2,90;1,20 2,40;0,00;1,20 1,20;10,50;1,20

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

 $|f(-)| = 2.0 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58	PZ M	loins	
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
2	(EF) surfacique uniforme 6	PX=-9),92[kN/m2]	

^{* -} Coordonnées dans le repère global de la structure

- 2 (EF) surfacique uniforme 5 PX=9,92[kN/m2]
- 2 (EF) surfacique uniforme 54 PX=-9,92[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=9,92[kN/m2]
- 3 (EF) surfacique 3p (contour) 4 PZ1=-30,06[kN/m2] P1(0, 2, 1.2) P2(2.4, 2, 1.2)

P3(2.4, 10.5, 1.2) P4(0, 10.5, 1.2)

- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 1.2) P2(2.4, 0, 1.2) P3(2.4, 2, 1.2) P4(0, 2, 1.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 500,83
- 2 511,23
- 3 514,79
- 4 537,70
- 5 538,79
- 6 563,62
- 7 569,49

8 - 570,59

9 - 620,19

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées			Armatures adoptées			At	Ar						
	x1	y1	x2	y2	φ [mm	n] / [cm	n]	[cm2/	m]	[cm2/	m]		
1/1- /	Ax Prin	cipal	0,00	-2,40	10,50	0,00	10,0/	25,0	2,39	<	3,14		
1/2-(1	/3-) A	y Perpe	endicul	aire	0,00	-1,60	0,95	-0,80	14,0 /	7,0	11,47	<	21,99
1/3- /	Ay Per	pendicu	ulaire	0,00	-2,40	10,50	0,00	14,0 /	14,0	10,93	<	11,00	

Ferraillage supérieur

Nom coordonnées			Armatures adoptées			At	Ar						
	x1	y1	x2	y2	φ [mm	n] / [cm	1]	[cm2/	m]	[cm2	/m]		
1/1+	Ax Prir	ncipal	0,00	-2,40	10,50	0,00	10,0/	25,0	2,09	<	3,14		
1/2+	Av Per	nendic	ulaire	0.00	-2 40	10 50	0.00	14 0 /	20.0	7 65	<	7 70	

4. Quantitatif

Volume de Béton = 6,30 (m3)

Surface de Coffrage = 25,20 (m2)

Périmètre de la dalle = 25,80 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 482,31 (kG)

Densité = 76,56 (kG/m3)

Diamètre moyen = 12,6 (mm)

Vii CALCUL DU RADIER

1. Dalle: Dalle1 - panneau n° 1

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3,0 (cm)

1.2. Béton

Classe : BETON; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,20 (m)

Contour:

bord	début	fin	longu			
	x1	y1	x2	y2	(m	1)
1	0,00	2,40	10,50	2,40	10,50	
2	10,50	2,40	10,50	0,00	2,40	
3	10,50	0,00	0,00	0,00	10,50	
4	0,00	0,00	0,00	2,40	2,40	

Appui:

n°	Nom o	n dimensions coordonnées					
	((m)	x	y			
0	linéaire		0,20 /	10,50	5,25	0,00	_
0	linéaire		0,20 /	10,50	5,25	2,40	

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

3,14 9,82 25,13 13,99

Ferraillage théorique modifié (cm2/m):

2,15 8,43 14,35 13,68

Ferraillage théorique primaire (cm2/m):

2,15 8,43 14,35 13,68

Coordonnées (m):

8,60;1,20 0,00;-0,00 10,50;1,20 10,50;2,40

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	2,15/3,14	0,08/3,14	0,31/3,14	0,74/3,14
Ax(-) (cm2/m)	0,01/3,27	8,43/9,82	0,00/0,00	2,84/3,27
Ay(+) (cm2/m)	12,78/25,13	0,00/0,00	14,35/25,13	0,03/12,57
Ay(-) (cm2/m)	0,05/13,99	11,61/13,99	0,06/13,99	13,68/13,99

ELS

Mxx (kN*m/m)	8,24	-26,48	30,37	-7,92
Myy (kN*m/m)	41,31	-35,31	46,08	-44,02
Mxy (kN*m/m)	0,00	3,61	0,00	1,66

ELU

Mxx (kN*m/m)8,24 -26,480,37 -7,92

Myy (kN*m/m) 41,31 -35,3146,08 -44,02

Mxy (kN*m/m)0,00 3,61 0,00 1,66

Coordonnées (m) 8,60;1,20 0,00;-0,00 10,50;1,20 10,50;2,40

Coordonnées* (m) 1,20;8,60;0,00 2,40;0,00;0,00 1,20;10,50;0,00 0,00;10,50;0,00

* - Coordonnées dans le repère global de la structure

1.5.4. Flèche

1

 $|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$

|f(-)| = 1.8 (cm) <= fdop(-) = 3.0 (cm)

poids propre 1 4A6 54 55 58

2. **Chargements:**

Cas Type Liste Valeur

1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
2	(EF) surfacique uniforme 6	PX=-9	9,92[kN/m2]	

PZ Moins

- 2 (EF) surfacique uniforme 5 PX=9,92[kN/m2]
- 2 (EF) surfacique uniforme PX=-9,92[kN/m2]54
- 2 (EF) surfacique uniforme 55 PX=9,92[kN/m2]
- (EF) surfacique 3p (contour) 3 4 PZ1=-30,06[kN/m2] P1(0, 2, 1.2) P2(2.4, 2, 1.2) P3(2.4, 10.5, 1.2) P4(0, 10.5, 1.2)
- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]

8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 1.2) P2(2.4, 0, 1.2) P3(2.4, 2, 1.2) P4(0, 2, 1.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 686,91
- 2 692,56
- 3 694,18
- 4 723,65
- 5 732,12
- 6 735,49
- 7 782,09
- 8 785,45
- 9 786,15
- 10 878,79

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées		Arma	Armatures adoptées			At Ar						
	x1	y1	x2	y2	φ [mm	n] / [cm	1]	[cm2/	/m]	[cm2/	m]	
1/1-(1	/2-) A	x Princ	ipal	0,00	0,00	0,95	2,40	10,0 /	8,0	8,43	<	9,82
1/2- /	Ax Prir	ncipal	0,00	0,00	10,50	2,40	10,0/	24,0	3,12	<	3,27	
1/3- A	Ay Pei	rpendic	ulaire	0,00	0,00	10,50	2,40	14,0 /	11,0	13,68	<	13,99

Ferraillage supérieur

Nom	coord	lonnée	s	Arma	tures a	dopté	es	At	Ar				
	x1	y1	x2	y2	φ [mm	n] / [cm	n]	[cm2/	m]	[cm2/	m]		
1/1+	Ax Prir	ncipal	0,00	0,00	10,50	2,40	10,0/	25,0	2,15	<	3,14		
1/2+(1/3+) <i>A</i>	y Perp	endicu	ılaire	7,64	0,80	10,50	1,60	16,0 /	8,0	14,35	<	25,13
1/3+	Ay Per	pendic	ulaire	0,00	0,00	10,50	2,40	16,0 /	16,0	12,33	<	12,57	

4. Quantitatif

Volume de Béton = 5,04 (m3)

Surface de Coffrage = 25,20 (m2)

Périmètre de la dalle = 25,80 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 703,71 (kG)

Densité = 139,63 (kG/m3)

Diamètre moyen = 13,1 (mm)

Viii CALCUL DU PIEDROIT

1. Dalle: Dalle5 - panneau n° 5

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,20 (m)

Contour:

bord	début fin		longu		
	x1	y1	x2	y2	(m)
1	0,00	-1,20	10,50	-1,20	10,50
2	10,50	-1,20	10,50	0,00	1,20
3	10,50	0,00	0,00	0,00	10,50
4	0,00	0,00	0,00	-1,20	1,20

Appui:

n°	Nom dimensions coordonnées						
	(m)	x y					
0	linéaire	1,20 / 0,20	0,00 -0,60) —			
0	linéaire	0,20 / 10,50	5,25 -1,20) —			
0	linéaire	0,25 / 10,50	5,25 0,00	_			

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

3,27 3,27 18,28 18,28

Ferraillage théorique modifié (cm2/m):

3,17 2,88 0,30 13,13

Ferraillage théorique primaire (cm2/m):

3,17 2,88 0,30 13,13

Coordonnées (m):

0,00;-0,40 0,00;-1,20 0,40;-0,60 10,30;-1,20

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	3,17/3,27	0,11/3,27	0,38/3,27	0,01/3,27
Ax(-) (cm2/m)	0,23/3,27	2,88/3,27	1,13/3,27	2,12/3,27
Ay(+) (cm2/m)	0,24/18,28	0,07/18,28	0,30/18,28	0,09/18,28
Av(-) (cm2/m)	3.11/18.28	12.23/18.28	4.41/18.28	13.13/18.28

ELS

Mxx (kN*m/m)	11,15 -10,60-2,47 -6,44
Myy (kN*m/m)	-5,77 -39,65-11,86-41,81
Mxy (kN*m/m)	-2,09 -1,12 0,14 2,43
	170

ELU

Mxx (kN*m/m)	11,15 -10,60-2,47 -6,44
Myy (kN*m/m)	-5,77 -39,65-11,86-41,81
Mxv (kN*m/m)	-2.09 -1.12 0.14 2.43

Coordonnées (m) 0,00;-0,40 0,00;-1,20 0,40;-0,60 10,30;-1,20 Coordonnées* (m) 0,00;0,00;0,80 0,00;0,00;0,00 0,00;0,40;0,60 0,00;10,30;0,00

* - Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \ll fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 0.1 \text{ (cm)} <= fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58	PZI	Moins	
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,20[m]	Direction=-Z

- 2 (EF) surfacique uniforme 6 PX=-9,92[kN/m2]
- 2 (EF) surfacique uniforme 5 PX=9,92[kN/m2]
- 2 (EF) surfacique uniforme 54 PX=-9,92[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=9,92[kN/m2]
- 3 (EF) surfacique 3p (contour) 4 PZ1=-30,06[kN/m2] P1(0, 2, 1.2) P2(2.4, 2, 1.2) P3(2.4, 10.5, 1.2) P4(0, 10.5, 1.2)
- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 1.2) P2(2.4, 0, 1.2) P3(2.4, 2, 1.2) P4(0, 2, 1.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 344,26
- 2 350,34
- 3 352,99
- 4 356,17
- 5 366,96
- 6 366,96

7 - 377,76

8 - 381,80

9 - 407,43

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées			Armatures adoptées				At	Ar					
	x1	y 1	x2	y2	φ [mm] / [cm]			[cm2/	m]	[cm2/m]			
1/1- /	Ax Prin	cipal	0,00	-1,20	10,50	0,00	10,0/	24,0	2,88	<	3,27		
1/2-(1	/4-) Ay	y Perpe	endicul	aire	0,00	-1,20	10,50	-0,60	16,0 /	11,0	13,13	<	18,28
1/3-(1/4-) Ay Perpendiculaire					9,55	-0,60	10,50	0,00	16,0 /	11,0	9,56	<	18,28
1/4- /	Ay Perp	pendicu	ulaire	0,00	-1,20	10,50	0,00	16,0 /	22,0	8,76	<	9,14	

Ferraillage supérieur

Nom	coordonnées			Armatures adoptées				At	Ar				
	x1	y 1	x2	y2	φ [mm] / [cm]			[cm2/m]		[cm2/m]			
1/1+	Ax Prir	ncipal	0,00	-1,20	10,50	0,00	10,0/	24,0	3,17	<	3,27		
1/2+(1/4+) /	y Perp	endicu	ılaire	0,00	-1,20	10,50	-0,60	16,0 /	11,0	0,30	<	18,28
1/3+(1/4+) /	y Perp	endicu	ılaire	9,55	-0,60	10,50	0,00	16,0 /	11,0	0,21	<	18,28
1/4+	Av Per	pendic	ulaire	0.00	-1,20	10,50	0.00	16,0/	22,0	0.30	<	9,14	

4. Quantitatif

Volume de Béton = 2,52 (m3)

Surface de Coffrage = 12,60 (m2)

Périmètre de la dalle = 23,40 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 402,77 (kG)

Densité = 159,83 (kG/m3)

Diamètre moyen = 14,0 (mm)

IX CALCUL DU MUR EN AILE

1. Dalle: Dalle55 - panneau n° 55

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON30; résistance caractéristique = 30,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 0 h

Type de calcul : flexion + compression/traction

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début fin		longu			
	x1	y1	x2	y2		(m)
1	-0,00	1,70	1,20	1,70	1,20	
2	1,20	1,70	1,20	1,41	0,28	
3	1,20	1,41	0,20	0,00	1,73	
4	0,20	0,00	-0,00	0,00	0,20	
5	-0,00	0,00	-0,00	1,70	1,70	

Appui:

n° Nom dimensions coordonnées bord

(m) x y

0 linéaire 1,70 / 0,20 0,00 0,85 —

0 linéaire 0,25 / 1,20 0,60 1,70 —

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion, compression/traction

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

10,26 2,19 10,58 10,26

Ferraillage théorique modifié (cm2/m):

7,80 2,06 8,90 10,17

Ferraillage théorique primaire (cm2/m):

7,80 2,06 8,90 10,17

Coordonnées (m):

-0,00;1,48 1,20;1,41 -0,00;1,70 1,20;1,70

1.5.2. Moments maximaux + ferraillage pour la flexion, compression/traction

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

^{* -} présence du chapiteau

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	7,80/10,26	5,00/10,26	7,80/10,26	5,00/10,26
Ax(-) (cm2/m)	0,00/0,00	2,06/2,19	0,00/0,00	2,06/2,19
Ay(+) (cm2/m)	8,90/10,58	6,60/10,58	8,90/10,58	6,60/10,58
Ay(-) (cm2/m)	2,21/10,26	5,10/10,26	2,21/10,26	10,17/10,26

ELS

Mxx (kN*m/m)	34,19	1,52	52,06	7,35
Myy (kN*m/m)	6,78	-1,34	16,06	-17,28
Mxy (kN*m/m)	1,68	4,36	-1,15	7,17

Coordonnées (m) -0,00;1,48 1,20;1,41 -0,00;1,70 1,20;1,70

Coordonnées* (m) -0,15;-0,15;0,00 -0,20;-0,20;1,20 0,00;0,00;0,00 0,00;0,00;1,20

* - Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.2 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 0.0 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58	PZ N	Moins
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,20[m] Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,20[m]
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,20[m] Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,20[m] Direction=-Z
2	(EF) surfacique uniforme 6	PX=-9	9,92[kN/m2]
2	(EF) surfacique uniforme 5	PX=9	,92[kN/m2]
2	(EF) surfacique uniforme 54	PX=-9	9,92[kN/m2]
2	(EF) surfacique uniforme 55	PX=9	,92[kN/m2]
3 P3(2.	(EF) surfacique 3p (contour) 4, 10.5, 1.2) P4(0, 10.5, 1.2)	4	PZ1=-30,06[kN/m2] P1(0, 2, 1.2) P2(2.4, 2, 1.2)
14	(EF) surfacique uniforme 4	PZ=	-60,00[kN/m2]
8 P3(2.	(EF) surfacique 3p (contour) 4, 2, 1.2) P4(0, 2, 1.2)	4	PZ1=-3,02[kN/m2] P1(0, 0, 1.2) P2(2.4, 0, 1.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 34,75

2 - 39,23

3 - 39,23

4 - 41,54

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonr		donnée	S	Arma	tures a	adopté	es	At	Ar			
	x 1	y1	x2	y2	φ [mn	n] / [cn	n]	[cm2/	m]	[cm2/	m]	
1/1-	Ax Prin	cipal	-0,00	0,00	1,20	1,70	8,0 / 2	23,0	2,06	<	2,19	
1/2-	Av Peri	pendici	ılaire	-0.00	0.00	1.20	1.70	14.0 /	15.0	10.17	<	10.26

Ferraillage supérieur

Nom	coord	donnée	es	Arma	tures a	adopté	es	At	Ar			
	x1	y1	x2	y2	φ [mm	n] / [cm	1]	[cm2/	m]	[cm2/	/m]	
1/1+	Ax Prir	ncipal	-0,00	0,00	1,20	1,70	14,0 /	15,0	7,80	<	10,26	
1/2+	Ay Per	pendic	ulaire	-0,00	0,00	1,20	1,70	16,0 /	19,0	8,90	<	10,58

4. Quantitatif

Volume de Béton = 0.33 (m3)

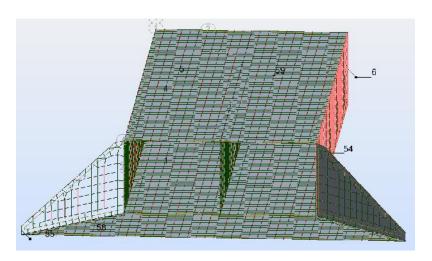
Surface de Coffrage = 1,33 (m2)

Périmètre de la dalle = 5,11 (m)

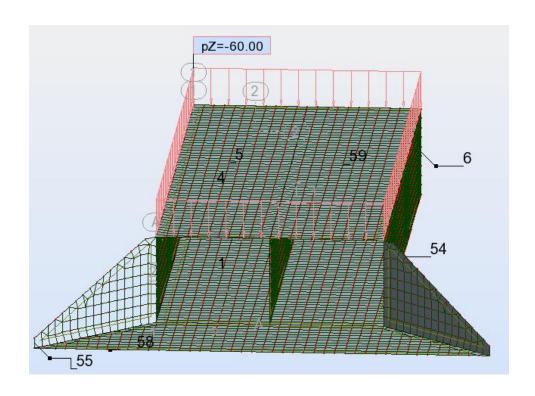
Superficie des réservations = 0,00 (m2)

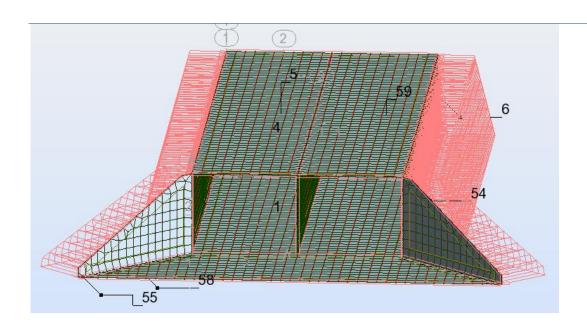
Acier HA 500

Poids total = 30,13 (kG)

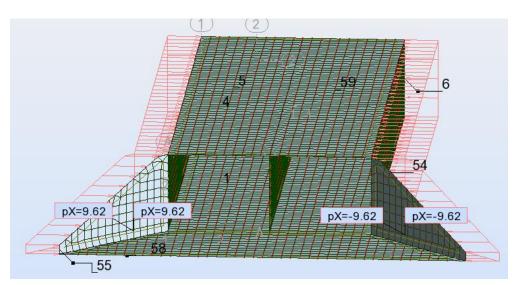

Densité = 90,65 (kG/m3)

Diamètre moyen = 13,2 (mm)

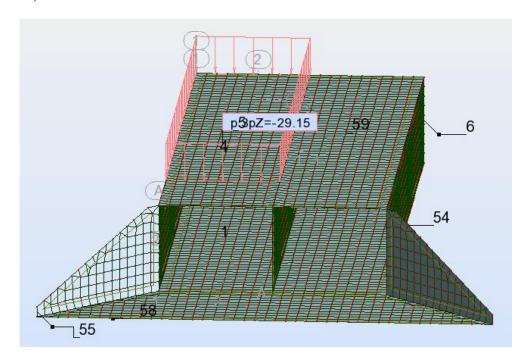

Liste par diamètres:

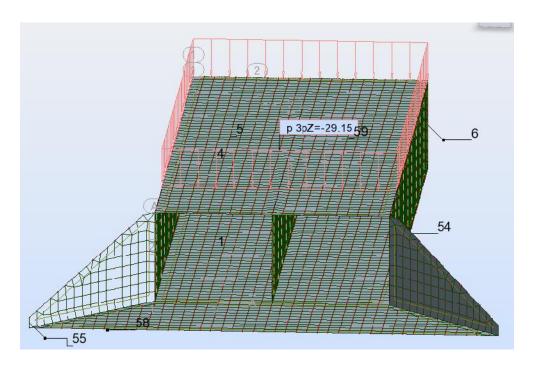

F)- DALOT DOUBLE 2x2x1.5

MODELISATION

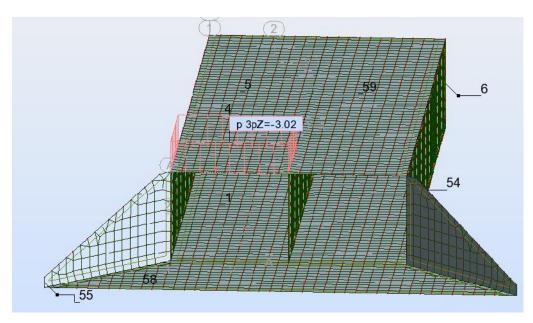


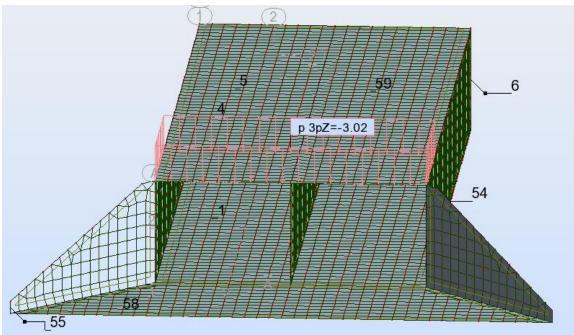
ii) MODELISATION SOUS REMBLAI ET POUSSEE DES TERRES

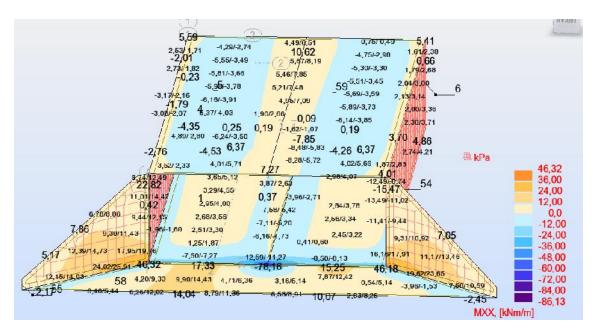




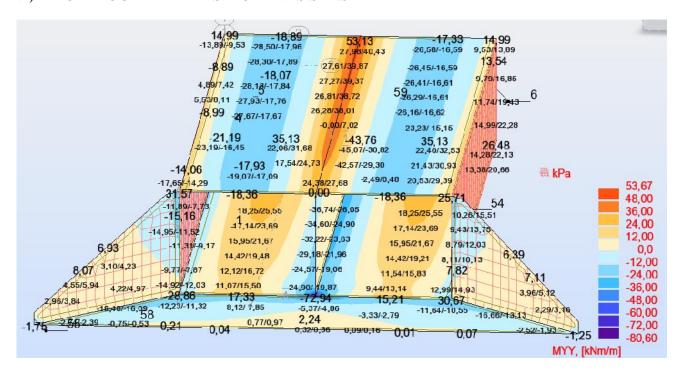
ii) MODELISATION SOUS SURCHARGE SUR REMBLAI




iii) MODELISATION SOUS SURCHAGE DU AU SYSTEME Bt



iV) MODELISATION SOUS SURCHAGE SUR TROTTOIR



V) CARTOGRAPHIE DES MOMENTS SENS XX

vi) CARTOGRAPHIE DES MOMENTS SENS YY

Vii CALCUL DU TABLIER

1. Dalle: Dalle4 - panneau n° 4

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début fin		longu		
	x1	y1	x2	y2	(m)
1	0,00	-4,40	10,50	-4,40	10,50
2	10,50	-4,40	10,50	0,00	4,40
3	10,50	0,00	0,00	0,00	10,50
4	0,00	0,00	0,00	-4,40	4,40

Appui:

n°	Nom dime	nsions coord	lonnées	bor
	(m)	x y		
0	linéaire	0,25 / 10,50	5,25 -4,40	
0	linéaire	0,25 / 10,50	5,25 -2,20	
0	linéaire	0,25 / 10,50	5,25 0,00	_

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

3,14 3,14 13,09 6,54

Ferraillage théorique modifié (cm2/m):

2,10 1,54 12,08 6,15

Ferraillage théorique primaire (cm2/m):

2,10 1,54 12,08 6,15

Coordonnées (m):

0,99;-2,20 8,20;-3,20 0,20;-2,20 0,00;-3,40

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	2,10/3,14	0,01/3,14	1,59/3,14	0,02/3,14
Ax(-) (cm2/m)	0,01/1,57	1,54/3,14	0,01/1,57	0,30/3,14
Ay(+) (cm2/m)	11,78/13,09	0,05/4,36	12,08/13,09	0,08/4,36
Ay(-) (cm2/m)	0,08/6,54	5,33/6,54	0,08/6,54	6,15/6,54

ELS

Mxx (kN*m/m) 10,62 -6,22 8,09 -0,41 Myy (kN*m/m) 51,62 -21,2953,13 -27,87 194 Mxy (kN*m/m) 0,00 0,61 0,00 0,50

ELU

Mxx (kN*m/m)	10,62	-6,22	8,09	-0,41
Myy (kN*m/m)	51,62	-21,29	53,13	-27,87
Mxy (kN*m/m)	0,00	0,61	0,00	0,50

Coordonnées (m) 0,99;-2,20 8,20;-3,20 0,20;-2,20 0,00;-3,40 Coordonnées* (m) 2,20;9,51;1,70 1,20;2,30;1,70 2,20;10,30;1,70 1,00;10,50;1,70

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

 $|f(-)| = 1.9 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58 59		PZ Moins	
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z

^{* -} Coordonnées dans le repère global de la structure

1	(EF) pression hydrostatique	ıe	55	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
2	(EF) surfacique uniforme	6	PX=-9	9,62[kN/m2]	
2	(EF) surfacique uniforme	5	PX=9	,62[kN/m2]	
2	(EF) surfacique uniforme	54	PX=-9	9,62[kN/m2]	
2	(EF) surfacique uniforme	55	PX=9	,62[kN/m2]	
3 P3(4.	(EF) surfacique 3p (contou 4, 10.5, 1.7) P4(0, 10.5, 1.7	,	4	PZ1=-29,15[kN/m2] P1(0, 2, 1.7) F	22(4.4, 2, 1.7)
14	(EF) surfacique uniforme	4	PZ=	-60,00[kN/m2]	
8 P3(4.	(EF) surfacique 3p (contou 4, 2, 1.7) P4(0, 2, 1.7)	ur)	4	PZ1=-3,02[kN/m2] P1(0, 0, 1.7) P2	2(4.4, 0, 1.7)
4 P3(2.	(EF) surfacique 3p (conto 2, 10.5, 1.7) P4(0, 10.5, 1.7	,	4	PZ1=-29,15[kN/m2] P1(0, 2, 1.7) F	22(2.2, 2, 1.7)
15 P3(2.	(EF) surfacique 3p (conto 2, 2, 1.7) P4(0, 2, 1.7)	ur)	4	PZ1=-3,02[kN/m2] P1(0, 0, 1.7) P2	2(2.2, 0, 1.7)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELS/16 (4+15+1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 698,53

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées			Arma	Armatures adoptées				Ar					
		x 1	y1	x2	y2	φ [mm] / [cm]	[cm2/	m]	[cm2	/m]	
	1/1-	Ax Prin	cipal	0,00	-4,40	10,50	0,00	10,0/	25,0	1,54	<	3,14	
	1/2-	Ay Per	pendicı	ulaire	0,00	-4,40	10,50	0,00	10,0 /	12,0	6,15	<	6,54

Ferraillage supérieur

Nom	coor	donnée	es	Arma	tures a	dopté	es	At	Ar				
	x1	y1	x2	y2	φ [mm	n] / [cm	1]	[cm2/	m]	[cm2/	/m]		
1/1+	Ax Pri	ncipal	0,00	-4,40	10,50	0,00	10,0/	25,0	2,10	<	3,14		
1/2+(1/5+)	Ay Perp	endicu	ulaire	0,00	-2,64	10,50	-1,76	10,0 /	6,0	12,08	<	13,09
1/3+(1/5+)	Ay Perp	pendicu	ulaire	9,55	-4,40	10,50	-3,52	10,0 /	6,0	5,64	<	13,09
1/4+(1/5+)	Ay Perp	pendicu	ulaire	9,55	-0,88	10,50	0,00	10,0 /	6,0	5,64	<	13,09
1/5+	Ay Pe	rpendic	ulaire	0,00	-4,40	10,50	0,00	10,0 /	18,0	4,01	<	4,36	

4. Quantitatif

Volume de Béton = 11,55 (m3)

Surface de Coffrage = 46,20 (m2)

Périmètre de la dalle = 29,80 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 725,91 (kG)

Densité = 62,85 (kG/m3)

Diamètre moyen = 10,0 (mm)

Liste par diamètres:

Diam	nètre	Longueur	Nombre:
	(m)		
10	1,76	106	
10	4,34	156	
10	10,44	30	

Vii CALCUL DU RADIER

1. Dalle: Dalle1 - panneau n° 1

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1.4 (cm) d2 = 1.4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,30 (m)

Contour:

bord	début	fin	longu	ongueur		
	x1	y1	x2	y2	(m)	
1	0,00	4,40	10,50	4,40	10,50	
2	10,50	4,40	10,50	0,00	4,40	
3	10,50	0,00	0,00	0,00	10,50	
4	0,00	0,00	0,00	4,40	4,40	

Appui:

n°	Nom dimensions coordonnées						
	(m)	X	у				
0	linéaire	0,25 /	10,50 5,25	4,40			
0	linéaire	0,25 /	10,50 5,25	2,20			
0	linéaire	0,25 /	10,50 5,25	0,00	_		

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

Ferraillage théorique modifié (cm2/m):

Ferraillage théorique primaire (cm2/m):

Coordonnées (m):

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	1,39/3,14	0,46/3,14	0,52/3,14	0,46/3,14
Ax(-) (cm2/m)	0,05/3,27	15,23/19,63	0,02/3,27	15,23/19,63
Ay(+) (cm2/m)	5,77/7,14	0,13/3,57	6,80/7,14	0,13/3,57
Ay(-) (cm2/m)	0,16/7,85	14,25/15,71	0,07/7,85	14,25/15,71
ELS				
Mxx (kN*m/m)	6,57 -88,12	20,97 -88,12	2	
Myy (kN*m/m)	32,77 -78,70	38,78 -78,70)	
Mxy (kN*m/m)	0,68 -0,00	0,17 -0,00		
ELU				
Mxx (kN*m/m)	6,57 -88,12	20,97 -88,12	2	
Myy (kN*m/m)	32,77 -78,70	38,78 -78,70)	
Mxy (kN*m/m)	0,68 -0,00	0,17 -0,00		

Coordonnées (m) 8,20;3,60 0,00;2,20 10,40;1,00

Coordonnées* (m) 0,80;8,20;0,00

2,20;0,00;0,00

2,20;0,00;0,00

0,00;2,20

3,40;10,40;0,00

^{* -} Coordonnées dans le repère global de la structure

1.5.4. Flèche

 $|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$

 $|f(-)| = 2.0 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58 59)	PZ Moins
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,70[m] Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z
2	(EF) surfacique uniforme 6	PX=-9),62[kN/m2]
2	(EF) surfacique uniforme 5	PX=9,	62[kN/m2]
2	(EF) surfacique uniforme 54	PX=-9),62[kN/m2]
2	(EF) surfacique uniforme 55	PX=9,	62[kN/m2]
3 P3(4.	(EF) surfacique 3p (contour) 4, 10.5, 1.7) P4(0, 10.5, 1.7)	4	PZ1=-29,15[kN/m2] P1(0, 2, 1.7) P2(4.4, 2, 1.7)
14	(EF) surfacique uniforme 4	PZ=-	60,00[kN/m2]
8 P3(4.	(EF) surfacique 3p (contour) 4, 2, 1.7) P4(0, 2, 1.7)	4	PZ1=-3,02[kN/m2] P1(0, 0, 1.7) P2(4.4, 0, 1.7)
4 P3(2.	(EF) surfacique 3p (contour) 2, 10.5, 1.7) P4(0, 10.5, 1.7)	4	PZ1=-29,15[kN/m2] P1(0, 2, 1.7) P2(2.2, 2, 1.7)
15 P3(2.	(EF) surfacique 3p (contour) 2, 2, 1.7) P4(0, 2, 1.7)	4	PZ1=-3,02[kN/m2] P1(0, 0, 1.7) P2(2.2, 0, 1.7)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELS/16 (4+15+1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 786,37

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom	coord	donnée	es	Arma	tures a	adopté	es	At	Ar				
	x 1	y 1	x2	y2	φ [mm	n] / [cm	n]	[cm2/	m]	[cm2/	m]		
1/1-(1	/2-) A	x Princ	ipal	0,00	0,00	0,95	4,40	10,0/	4,0	15,23	<	19,63	
1/2- /	Ax Prin	cipal	0,00	0,00	10,50	4,40	10,0 /	24,0	2,68	<	3,27		
1/3-(1	/7-) A	y Perpe	endicul	aire	0,00	1,76	10,50	2,64	10,0 /	5,0	14,25	<	15,71
1/4-(1	/7-) A	y Perpe	endicul	aire	0,00	0,00	0,95	4,40	10,0 /	10,0	6,16	<	7,85
1/5-(1	/7-) A	y Perpe	endicul	aire	5,73	0,00	10,50	0,88	10,0 /	10,0	4,40	<	7,85
1/6-(1	/7-) A	y Perpe	endicul	aire	5,73	3,52	10,50	4,40	10,0 /	10,0	4,40	<	7,85
1/7- /	Ay Per	pendic	ulaire	0,00	0,00	10,50	4,40	10,0/	20,0	2,49	<	3,93	
Ferrai	Ferraillage supérieur												

Nom	coor	donné	es	Arma	tures	adopté	es	At	Ar				
	x1	y1	x2	y2	φ [mr	n] / [cn	n]	[cm2	/m]	[cm2	/m]		
1/1+	Ax Pri	ncipal	0,00	0,00	10,50	4,40	10,0/	25,0	1,39	<	3,14		
1/2+(1/3+)	Ay Peri	pendic	ulaire	1,91	0,00	10,50	4,40	10,0 /	/ 11,0	6,80	<	7,14

1/3+ Ay Perpendiculaire 0,00 0,00 10,50 4,40 10,0 / 22,0 3,18 < 3,57

4. Quantitatif

Volume de Béton = 13,86 (m3)

Surface de Coffrage = 46,20 (m2)

Périmètre de la dalle = 29,80 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 904,39 (kG)

Densité = 65,25 (kG/m3)

Diamètre moyen = 10,0 (mm)

Liste par diamètres:

Diamètre Longueur Nombre:

(m)

10 1,37 90

10 1,76 127

10 4,34 169

10 10,44 37

Viii CALCUL DU PIEDROIT

1. Dalle: Dalle6 - panneau n° 6

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

204

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début	fin	longu	eur	
	x1	y1	x2	y2	(m)
1	0,00	-1,70	10,50	-1,70	10,50
2	10,50	-1,70	10,50	0,00	1,70
3	10,50	0,00	0,00	0,00	10,50
4	0,00	0,00	0,00	-1,70	1,70

Appui:

n°	Nom	dimer	nsions	coord	lonnée	es.	bord
	((m)	x	у			
0	linéaire)	0,30 /	10,50	5,25	-1,70	
0	linéaire)	1,70 /	0,25	0,00	-0,85	
0	linéaire)	0,25 /	10,50	5,25	0,00	_

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

4,36 4,36 7,85 7,85

Ferraillage théorique modifié (cm2/m):

1,97 3,71 6,78 0,42

Ferraillage théorique primaire (cm2/m):

1,97 3,71 6,78 0,42

Coordonnées (m):

0,00;-1,70 0,00;-0,19 0,00;-1,70 10,40;-0,90

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	1,97/4,36	0,51/4,36	1,97/4,36	0,38/4,36
Ax(-) (cm2/m)	0,00/4,36	3,71/4,36	0,00/4,36	0,08/4,36
Ay(+) (cm2/m)	6,78/7,85	3,02/7,85	6,78/7,85	3,64/7,85
Ay(-) (cm2/m)	0,02/7,85	0,37/7,85	0,02/7,85	0,42/7,85

ELS

Mxx (kN*m/m)	5,82	-18,37	5,82	0,26
Myy (kN*m/m)	27,59	6,20	27,59	16,04
Mxy (kN*m/m)	4,36	0,48	•	0,06 207

ELU

Mxx (kN*m/m) 5,82 -18,375,82 0,26

Myy (kN*m/m) 27,59 6,20 27,59 16,04

Mxy (kN*m/m) 4,36 0,48 4,36 0,06

Coordonnées (m) 0,00;-1,70 0,00;-0,19 0,00;-1,70 10,40;-0,90

Coordonnées* (m) 4,40;0,00;0,00 4,40;0,00;1,51 4,40;0,00;0,00

4,40;10,40;0,80

1.5.4. Flèche

$$|f(+)| = 0.1 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 0.0 \text{ (cm)} <= fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

P3(4.4, 2, 1.7) P4(0, 2, 1.7)

1	poids propre 1 4A6 54 55 58 59)	PZ Moins
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,70[m]
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,70[m]
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z
2	(EF) surfacique uniforme 6	PX=-9	,62[kN/m2]
2	(EF) surfacique uniforme 5	PX=9,	62[kN/m2]
2	(EF) surfacique uniforme 54	PX=-9	,62[kN/m2]
2	(EF) surfacique uniforme 55	PX=9,	62[kN/m2]
3 P3(4.	(EF) surfacique 3p (contour) 4, 10.5, 1.7) P4(0, 10.5, 1.7)	4	PZ1=-29,15[kN/m2] P1(0, 2, 1.7) P2(4.4, 2, 1.7)
14	(EF) surfacique uniforme 4	PZ=-	60,00[kN/m2]
8	(EF) surfacique 3p (contour)	4	PZ1=-3,02[kN/m2] P1(0, 0, 1.7) P2(4.4, 0, 1.7)

^{* -} Coordonnées dans le repère global de la structure

4 (EF) surfacique 3p (contour) 4 PZ1=-29,15[kN/m2] P1(0, 2, 1.7) P2(2.2, 2, 1.7)

P3(2.2, 10.5, 1.7) P4(0, 10.5, 1.7)

15 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 1.7) P2(2.2, 0, 1.7) P3(2.2, 2, 1.7) P4(0, 2, 1.7)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELS/16 (4+15+1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 257,43

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom	coord	lonnee	S	Armatures adoptees A			At	Ar					
	x1	y 1	x2	y2	φ [mm	n] / [cm	n]	[cm2/	m]	[cm2/	/m]		
1/1- /	Ax Prin	cipal	0,00	-1,70	10,50	0,00	10,0/	18,0	3,71	<	4,36		
1/2-(1	/4-) Ay	/ Perpe	endicul	aire	0,00	-1,70	0,95	0,00	10,0/	10,0	0,37	<	7,85
1/3-(1	/4-) Ay	/ Perpe	endicul	aire	7,64	-1,70	10,50	-0,85	10,0 /	10,0	0,42	<	7,85
1/4- /	Ay Perp	endicu	ılaire	0,00	-1,70	10,50	0,00	10,0 /	20,0	0,42	<	3,93	

Ferraillage supérieur

Nom coordonnées			Arma	tures a	dopté	es	At	Ar						
	x1	y1	x2	y2	φ [mm	n] / [cm	ո]	[cm2/	/m]	[cm2	/m]			
1/1+	Ax Prir	ncipal	0,00	-1,70	10,50	0,00	10,0/	18,0	1,97	<	4,36			
1/2+(1/4+) /	Ay Perp	pendicu	ulaire	0,00	-1,70	0,95	0,00	10,0 /	10,0	6,78	<	7,85	
1/3+(1/4+) /	Ay Perp	pendicu	ulaire	7,64	-1,70	10,50	-0,85	10,0 /	10,0	4,84	<	7,85	
1/4+	Ay Per	pendic	ulaire	0,00	-1,70	10,50	0,00	10,0/	20,0	3,83	<	3,93		

4. Quantitatif

Volume de Béton = 4,46 (m3)

Surface de Coffrage = 17,85 (m2)

Périmètre de la dalle = 24,40 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 242,13 (kG)

Densité = 54,26 (kG/m3)

Diamètre moyen = 10,0 (mm)

Liste par diamètres:

IX CALCUL DU MUR EN AILE

1. Dalle: Dalle54 - panneau n° 54

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3,0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début	fin	longu	eur		
	x1	y1	x2	y2		(m)
1	-0,00	-3,11	1,70	-3,11	1,70	
2	1,70	-3,11	1,70	-2,83	0,28	
3	1,70	-2,83	0,20	0,00	3,20	
4	0,20	0,00	-0,00	0,00	0,20	
5	-0,00	0,00	-0,00	-3,11	3,11	

Appui:

n°	Nom	dime	nsion	s coor	donné	es	bord
		(m)	x	у			
0	linéai	re	0,25	/ 1,70	0,85	-3,11	_
0	linéai	re	3,11	/ 0,30	0,00	-1,56	

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

19,63 3,14 7,14 5,24

Ferraillage théorique modifié (cm2/m):

10,42 0,80 4,58 4,45

Ferraillage théorique primaire (cm2/m):

10,42 0,80 4,58 4,45

Coordonnées (m):

-0,00;-3,11 1,61;-2,65 -0,00;-3,11 1,70;-3,11

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	10,42/19,63	0,62/4,91	10,42/19,63	0,95/4,91
Ax(-) (cm2/m)	0,22/3,14	0,80/3,14	0,22/3,14	0,48/3,14
Ay(+) (cm2/m)	4,58/7,14	0,31/3,57	4,58/7,14	0,86/3,57
Ay(-) (cm2/m)	0,09/5,24	2,66/5,24	0,09/5,24	4,45/5,24

ELS

Mxx (kN*m/m)	43,59	3,05	43,59	1,22
Myy (kN*m/m)	16,45	-5,89	16,45	-19,77
Mxy (kN*m/m)	-5,21	-0,96	-5,21	-1,38
				213

ELU

Mxx (kN*m/m)	43,59	3,05	43,59	1,22
Myy (kN*m/m)	16,45	-5,89	16,45	-19,77
Mxy (kN*m/m)	-5,21	-0,96	-5,21	-1,38

Coordonnées (m) -0,00;-3,11 1,61;-2,65 -0,00;-3,11 1,70;-3,11 Coordonnées* (m) 4,40;0,00;0,00 4,73;-0,33;1,61 4,40;0,00;0,00 4,40;0,00;1,70

* - Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.3 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 0.0 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58 59		PZ Moins	
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z

- 2 (EF) surfacique uniforme 6 PX=-9,62[kN/m2]
- 2 (EF) surfacique uniforme 5 PX=9,62[kN/m2]
- 2 (EF) surfacique uniforme 54 PX=-9,62[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=9,62[kN/m2]
- 3 (EF) surfacique 3p (contour) 4 PZ1=-29,15[kN/m2] P1(0, 2, 1.7) P2(4.4, 2, 1.7) P3(4.4, 10.5, 1.7) P4(0, 10.5, 1.7)
- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 1.7) P2(4.4, 0, 1.7) P3(4.4, 2, 1.7) P4(0, 2, 1.7)
- 4 (EF) surfacique 3p (contour) 4 PZ1=-29,15[kN/m2] P1(0, 2, 1.7) P2(2.2, 2, 1.7) P3(2.2, 10.5, 1.7) P4(0, 10.5, 1.7)
- 15 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 1.7) P2(2.2, 0, 1.7) P3(2.2, 2, 1.7) P4(0, 2, 1.7)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELS/16 (4+15+1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 51,69

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées				Armatures adoptées				At	Ar			
	x1	y1	x2	y2	φ [mm	n] / [cn	ո]	[cm2/	m]	[cm2	/m]	
1/1-	Ax Prin	cipal	-0,00	-3,11	1,70	0,00	10,0/	25,0	0,80	<	3,14	
1/2-	Ay Perj	pendici	ulaire	-0,00	-3,11	1,70	0,00	10,0 /	15,0	4,45	<	5,24

Ferraillage supérieur

Nom coordonnées				Arma	matures adoptées			At	Ar				
	x 1	y1	x2	y2	φ [mm	n] / [cm	1]	[cm2/	m]	[cm2/	/m]		
1/1+(1	/3+)	Ax Princ	cipal	-0,00	-3,11	0,20	-1,89	10,0/	4,0	10,42	<	19,63	
1/2+(1	/3+)	Ax Princ	cipal	-0,00	-3,11	0,95	-0,94	10,0 /	8,0	6,67	<	9,82	
1/3+ /	Ax Pri	ncipal	-0,00	-3,11	1,70	0,00	10,0/	16,0	4,03	<	4,91		
1/4+(1	/5+)	Ay Perp	endicu	ılaire	-0,00	-3,11	0,20	-2,83	10,0 /	11,0	4,58	<	7,14
1/5+ /	Ay Pe	rpendic	ulaire	-0,00	-3,11	1,70	0,00	10,0 /	22,0	3,02	<	3,57	

4. Quantitatif

Volume de Béton = 0,79 (m3)

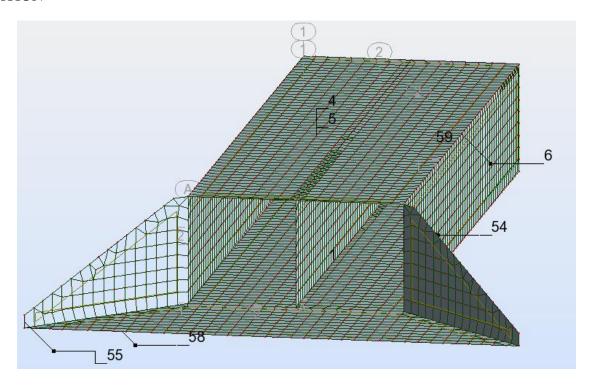
Surface de Coffrage = 3,17 (m2)

Périmètre de la dalle = 8,50 (m)

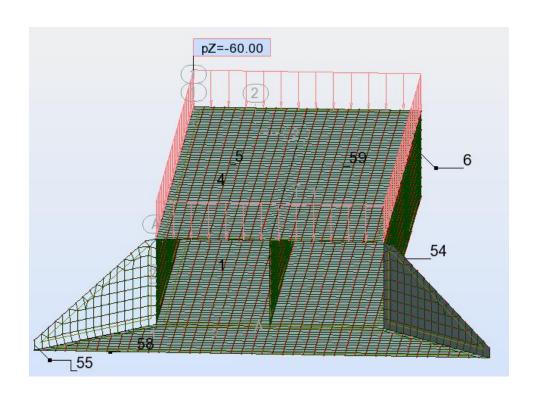
Superficie des réservations = 0,00 (m2)

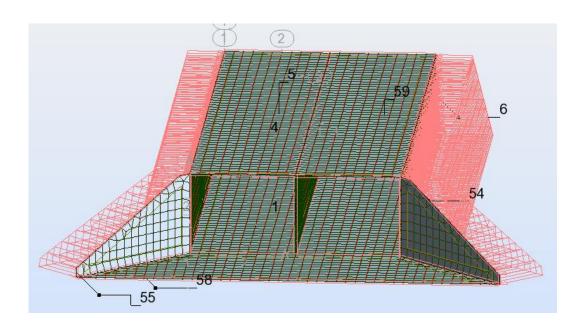
Acier HA 500

Poids total = 51,82 (kG)

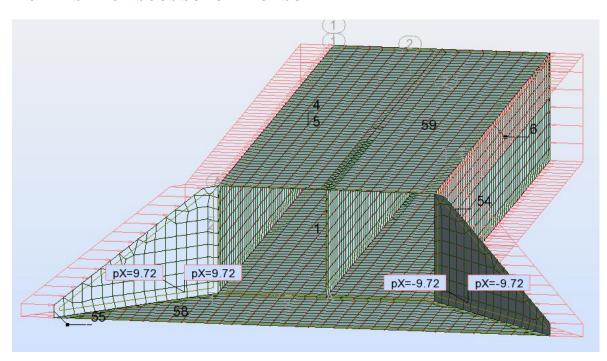

Densité = 65,44 (kG/m3)

Diamètre moyen = 10,0 (mm)

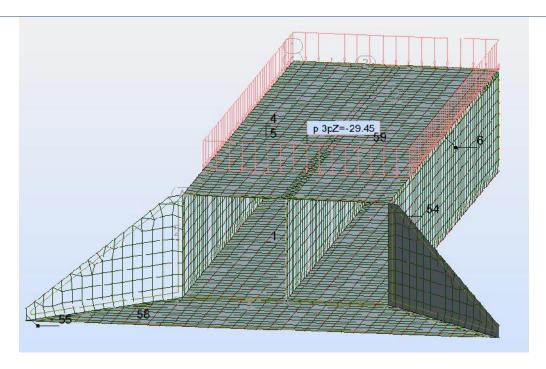

Liste par diamètres:


G)- DALOT DOUBLE 2x1.5x1.5

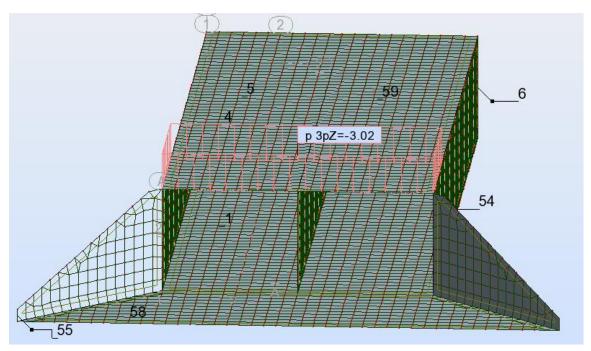
MODELISATION



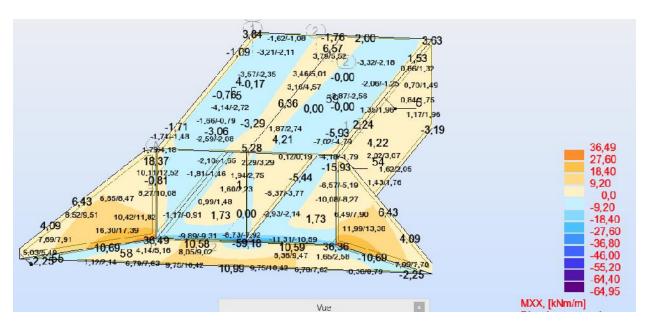
ii) MODELISATION SOUS REMBLAI ET POUSSEE DES TERRES



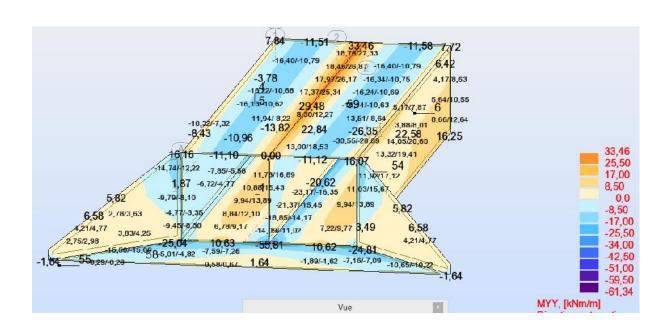
ii) MODELISATION SOUS SURCHARGE SUR REMBLAI



iii) MODELISATION SOUS SURCHAGE DU AU SYSTEME Bt



iV) MODELISATION SOUS SURCHAGE SUR TROTTOIR



V) CARTOGRAPHIE DES MOMENTS SENS XX

vi) CARTOGRAPHIE DES MOMENTS SENS YY

Vii CALCUL DU TABLIER

1. Dalle: Dalle4 - panneau n° 4

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1.4 (cm) d2 = 1.4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début	fin	fin longueur				
	x1	y1	x2	y2	(m)		
1	0,00	-3,40	10,50	-3,40	10,50		
2	10,50	-3,40	10,50	0,00	3,40		
3	10,50	0,00	0,00	0,00	10,50		
4	0,00	0,00	0,00	-3,40	3,40		

Appui:

n°	Nom dimensions coordonnées								
	(m)	x y							
0	linéaire	0,25 / 10	,50 5,25 -3,	40 —					
0	linéaire	0,25 / 10	,50 5,25 -1,	70 —					
0	linéaire	0,25 / 10	,50 5,25 0,0	00 —					

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

Ferraillage théorique modifié (cm2/m):

Ferraillage théorique primaire (cm2/m):

Coordonnées (m):

1.5.2. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	1,37/1,57	0,00/3,14	1,33/1,57	0,00/3,14
Ax(-) (cm2/m)	0,00/1,57	1,16/3,14	0,00/1,57	0,44/3,14
Ay(+) (cm2/m)	6,37/7,85	0,00/7,85	7,43/7,85	0,00/7,85
Ay(-) (cm2/m)	0,00/3,93	3,38/3,93	0,00/3,93	3,82/3,93
ELS				
Myy (kN*m/m)	636 -418	8 5 76 -0 44	L	

Mxx (kN*m/m) 6,36 -4,18 5,76 -0,44

Myy (kN*m/m) 28,90 -12,5133,46 -17,68

Mxy (kN*m/m) 0,00 0,41 0,45 0,14

Coordonnées (m) 5,94;-1,70 8,00;-2,40 0,20;-1,70 0,00;-0,64

Coordonnées* (m) 1,70;4,56;1,70 1,00;2,50;1,70 1,70;10,30;1,70 2,76;10,50;1,70

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 2.0 \text{ (cm)} <= fdop(-) = 3.0 \text{ (cm)}$$

^{* -} Coordonnées dans le repère global de la structure

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58 59		PZ Moins				
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z			
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,70[m]	Direction=-Z			
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z			
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z			
2	(EF) surfacique uniforme 6	PX=-9),72[kN/m2]				
2	(EF) surfacique uniforme 5	PX=9,	72[kN/m2]				
2	(EF) surfacique uniforme 54	PX=-9),72[kN/m2]				
2	(EF) surfacique uniforme 55	PX=9,	72[kN/m2]				
3 P3(3.	(EF) surfacique 3p (contour) 4, 10.5, 1.7) P4(0, 10.5, 1.7)	4	PZ1=-29,45[kN/m2] P1(0, 2, 1.7)	P2(3.4, 2, 1.7)			
14	(EF) surfacique uniforme 4	PZ=-	-60,00[kN/m2]				
8 P3(3.	(EF) surfacique 3p (contour) 4, 2, 1.7) P4(0, 2, 1.7)	4	PZ1=-3,02[kN/m2] P1(0, 0, 1.7) P2(3.4, 0, 1.7)				

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 451,37

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées			Arma	Armatures adoptées			At	Ar				
	x1	y1	x2	y2	φ [mm] / [cm	n]	[cm2/	m]	[cm2	/m]	
1/1- /	Ax Prin	cipal	0,00	-3,40	10,50	0,00	10,0/	25,0	1,16	<	3,14	
1/2- /	Ay Per	pendicu	ulaire	0,00	-3,40	10,50	0,00	10,0/	20,0	3,82	<	3,93

Ferraillage supérieur

Nom coordonnées		Armatures adoptées		At	Ar								
	x1	y1	x2	y2	φ [mm	n] / [cm	1]	[cm2/	m]	[cm2	/m]		
1/1+	Ax Prir	ncipal	0,00	-3,40	10,50	0,00	10,0/	25,0	1,37	<	3,14		
1/2+(1/3+) <i>A</i>	Ay Perp	endicu	ılaire	0,00	-2,55	10,50	-0,85	10,0 /	10,0	7,43	<	7,85
1/3+	Ay Per	pendic	ulaire	0,00	-3,40	10,50	0,00	10,0 /	20,0	3,49	<	3,93	

4. Quantitatif

Volume de Béton = 8,93 (m3)

Surface de Coffrage = 35,70 (m2)

Périmètre de la dalle = 27,80 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 442,81 (kG)

Densité = 49,61 (kG/m3)

Diamètre moyen = 10,0 (mm)

Vii CALCUL DU RADIER

1. Dalle: Dalle1 - panneau n° 1

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord		début	fin	longueur		
		x 1	y1	x2	y2	(m)
	1	0,00	3,40	10,50	3,40	10,50
	2	10,50	3,40	10,50	0,00	3,40
	3	10,50	0,00	0,00	0,00	10,50
	4	0,00	0,00	0,00	3,40	3,40

Appui:

n°	Nom dimensions coordonnées									
	(m)	x y								
0	linéaire	0,25 / 10	,50 5,25	3,40						
0	linéaire	0,25 / 10	,50 5,25	1,70						
0	linéaire	0,25 / 10	,50 5,25	0,00	_					

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Ferraillage réelle (cm2/m):

3,14 15,71 5,24 19,63

Ferraillage théorique modifié (cm2/m):

1,02 14,20 4,99 12,49

Ferraillage théorique primaire (cm2/m):

1,02 14,20 4,99 12,49

Coordonnées (m):

10,50;2,08 0,00;1,70 10,50;2,64 0,00;1,70

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	1,02/3,14	0,00/0,00	0,23/3,14	0,00/0,00
Ax(-) (cm2/m)	0,71/15,71	14,20/15,71	0,06/15,71	14,20/15,71
Ay(+) (cm2/m)	0,56/5,24	0,00/5,24	4,99/5,24	0,00/5,24
Av(-) (cm2/m)	3.45/9.82	12.49/19.63	0.00/9.82	12.49/19.63

ELS

0,02	-64,95	0,30	-64,95
1,65	-54,90	22,84	-54,90
-1,22	0,69		0,69 231
	1,65	1,65 -54,90	3,92 -64,950,30 1,65 -54,9022,84 -1,22 0,69 -0,17

Coordonnées (m) 10,50;2,08 0,00;1,70 10,50;2,64 0,00;1,70

Coordonnées* (m) 1,32;10,50;0,00 1,70;0,00;0,00 0,76;10,50;0,00 1,70;0,00;0,00

* - Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 2.0 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 5	58 59		PZ Moins					
1	(EF) pression hydrostatique	9	6	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z				
1	(EF) pression hydrostatique	9	5	Gamma=6,60[kG/m3] H=4,70[m] Direction					
1	(EF) pression hydrostatique)	54	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z				
1	(EF) pression hydrostatique			Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z				
2	(EF) surfacique uniforme	6	PX=-9	,72[kN/m2]					
2	(EF) surfacique uniforme	5	PX=9,	72[kN/m2]					
2	(EF) surfacique uniforme	54	PX=-9	,72[kN/m2]					
2	(EF) surfacique uniforme	55	PX=9,	72[kN/m2]					
3 P3(3.4	(EF) surfacique 3p (contour 4, 10.5, 1.7) P4(0, 10.5, 1.7)	·)	4	PZ1=-29,45[kN/m2] P1(0, 2, 1.7) P2(3.4, 2, 1.					

14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]

8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 1.7) P2(3.4, 0, 1.7) P3(3.4, 2, 1.7) P4(0, 2, 1.7)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 894,14

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées			Arma	Armatures adoptées			At	Ar			
	x1	y1	x2	y2	φ [mn	n] / [cn	n]	[cm2	/m] [cm2	/m]	
1/1-	Ax Prir	ncipal	0,00	0,00	10,50	3,40	10,0/	5,0	14,20 <	15,71	
1/2-(1	I/5-) A	y Perpe	endicu	laire	0,00	0,85	0,95	2,55	10,0 / 4,0	12,49 <	19,63
1/3-(1	I/5-) A	y Perpe	endicu	laire	0,00	0,00	0,95	3,40	10,0 / 8,0	5,68 <	9,82
1/4-(1	I/5-) A	y Perpe	endicu	laire	1,91	0,85	10,50	2,55	10,0 / 8,0	8,68 <	9,82

1/5- Ay Perpendiculaire 0,00 0,00 10,50 3,40 10,0 / 16,0 4,40 < 4,91

Ferraillage supérieur

Nom coordonnées Armatures adoptées At Ar

x1 y1 x2 y2 \(\phi \) [mm] / [cm] [cm2/m] [cm2/m]

1/1+ Ax Principal 0,00 0,00 10,50 3,40 10,0 / 25,0 1,02 < 3,14

1/2+ Ay Perpendiculaire 0,00 0,00 10,50 3,40 10,0 / 15,0 4,99 < 5,24

4. Quantitatif

Volume de Béton = 8,93 (m3)

Surface de Coffrage = 35,70 (m2)

Périmètre de la dalle = 27,80 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 917,56 (kG)

Densité = 102,81 (kG/m3)

Diamètre moyen = 10,0 (mm)

Viii CALCUL DU PIEDROIT

1. Dalle: Dalle6 - panneau n° 6

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début fin		longu		
	x1	y1	x2	y2	(m)
1	0,00	-1,70	10,50	-1,70	10,50
2	10,50	-1,70	10,50	0,00	1,70
3	10,50	0,00	0,00	0,00	10,50
4	0,00	0,00	0,00	-1,70	1,70

Appui:

n°	Nom dime	Nom dimensions coordonnées				
	(m)	x	y			
0	linéaire	0,25 /	10,50	5,25	-1,70	_
0	linéaire	1,70/	0,25	0,00	-0,85	
0	linéaire	0.25 /	10.50	5.25	0.00	

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

4,13 4,13 9,82 9,82

Ferraillage théorique modifié (cm2/m):

1,90 3,81 5,40 0,48

Ferraillage théorique primaire (cm2/m):

1,90 3,81 5,40 0,48

Coordonnées (m):

0,00;-1,70 0,00;-0,19 0,00;-1,70 0,00;-0,57

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	1,90/4,13	0,00/0,00	1,90/4,13	0,00/0,00
Ax(-) (cm2/m)	0,05/4,13	3,81/4,13	0,05/4,13	3,20/4,13
Ay(+) (cm2/m)	5,40/9,82	1,72/4,91	5,40/9,82	0,13/9,82
Ay(-) (cm2/m)	0,00/0,00	0,44/4,91	0,00/0,00	0,48/9,82

ELS

Mxx (kN*m/m) 4,24 -18,334,24 -15,75

Myy (kN*m/m) 20,48 2,91 20,48 -1,88

Mxy (kN*m/m) 5,39 -1,17 5,39 -0,95

Coordonnées (m) 0,00;-1,70 0,00;-0,19 0,00;-1,70 0,00;-0,57

Coordonnées* (m) 3,40;0,00;0,00 3,40;0,00;1,51 3,40;0,00;0,00 3,40;0,00;1,13

* - Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} <= fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 0.0 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55	58 59		PZ Moins	
1	(EF) pression hydrostatiqu	ie	6	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatiqu	ie	5	Gamma=6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatiqu	ie	54	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatiqu	ie	55	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
2	(EF) surfacique uniforme	6	PX=-9	,72[kN/m2]	
2	(EF) surfacique uniforme	5	PX=9,	72[kN/m2]	
2	(EF) surfacique uniforme	54	PX=-9	,72[kN/m2]	
2	(EF) surfacique uniforme	55	PX=9,	72[kN/m2]	

3 (EF) surfacique 3p (contour) 4 PZ1=-29,45[kN/m2] P1(0, 2, 1.7) P2(3.4, 2, 1.7) P3(3.4, 10.5, 1.7) P4(0, 10.5, 1.7)

14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]

8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 1.7) P2(3.4, 0, 1.7) P3(3.4, 2, 1.7) P4(0, 2, 1.7)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 259,75

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées **Armatures adoptées** At Ar **x1 y1 x2 y2 ♦ [mm] / [cm]** [cm2/m] [cm2/m] 1/1- Ax Principal 0.00 -1.70 10.50 0.00 10.0 / 19.0 3.81 < 4.13 1/2-(1/3-) Ay Perpendiculaire 0,00 -1,70 0,95 -0,85 10,0 / 8,0 0.29 < 9,82

3,57 <

4,91

1/3- Ay Perpendiculaire 0,00 -1,70 10,50 0,00 10,0 / 16,0 0,48 < 4,91

Ferraillage supérieur

Nom coordonnées **Armatures adoptées** Αt Ar **x1 v1 x2 y2 ♦ [mm] / [cm]** [cm2/m] [cm2/m] 1/1+ Ax Principal 0,00 -1,70 10,50 0,00 10,0 / 19,0 1,90 < 4,13 1/2+(1/3+) Ay Perpendiculaire 0,00 -1,70 0,95 -0,85 10,0 / 8,0 9,82 5,40 <

1/3+ Ay Perpendiculaire 0,00 -1,70 10,50 0,00 10,0 / 16,0

4. Quantitatif

Volume de Béton = 4,46 (m3)

Surface de Coffrage = 17,85 (m2)

Périmètre de la dalle = 24,40 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 232,99 (kG)

Densité = 52,21 (kG/m3)

Diamètre moyen = 10,0 (mm)

Liste par diamètres:

Diamètre Longueur Nombre:

(m)

10 1,26 12

10 1,64 132

10 10,44 14

iX CALCUL DU MUR EN AILE

1. Dalle: Dalle54 - panneau n° 54

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur: préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début fin		longu			
	x1	y1	x2	y2		(m)
1	-0,00	-3,11	1,70	-3,11	1,70	
2	1,70	-3,11	1,70	-2,83	0,28	
3	1,70	-2,83	0,20	-0,00	3,20	
4	0,20	-0,00	-0,00	-0,00	0,20	
5	-0,00	-0,00	-0,00	-3,11	3,11	

Appui:

n°	Nom	dimensions coordonnées					bord
		(m)	x	у			
0	linéair	е	0,25	/ 1,70	0,85	-3,11	_
0	linéair	е	3.11	/ 0.25	0.00	-1.56	_

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

9,82 3,14 6,54 6,54

Ferraillage théorique modifié (cm2/m):

8,93 0,78 4,47 4,33

Ferraillage théorique primaire (cm2/m):

8,93 0,78 4,47 4,33

Coordonnées (m):

-0,00;-3,11 1,14;-1,77 -0,00;-3,11 1,70;-3,11

1.5.2. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	8,93/9,82	3,60/9,82	8,93/9,82	0,48/4,91
Ax(-) (cm2/m)	0,00/0,00	0,78/3,14	0,00/0,00	0,42/3,14
Ay(+) (cm2/m)	4,47/6,54	2,75/3,27	4,47/6,54	0,00/0,00
Ay(-) (cm2/m)	0,05/0,00	0,65/3,27	0,05/0,00	4,33/6,54

ELS

Mxx (kN*m/m) 36,36 4,18 36,36 -2,12

Myy (kN*m/m) 15,55 4,64 15,55 -19,91

Mxy (kN*m/m) -5,71 -7,59 -5,71 0,37

Coordonnées (m) -0,00;-3,11 1,14;-1,77 -0,00;-3,11 1,70;-3,11

Coordonnées* (m) 3,40;0,00;0,00 4,35;-0,95;1,14 3,40;0,00;0,00 3,40;0,00;1,70

* - Coordonnées dans le repère global de la structure

1.5.4. Flèche

|f(+)| = 0.3 (cm) <= fdop(+) = 3.0 (cm)

|f(-)| = 0.0 (cm) <= fdop(-) = 3.0 (cm)

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58 59)	PZ Moins	
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
2	(EF) surfacique uniforme 6	PX=-9	,72[kN/m2]	
2	(EF) surfacique uniforme 5	PX=9,	72[kN/m2]	
2	(EF) surfacique uniforme 54	PX=-9	,72[kN/m2]	
2	(EF) surfacique uniforme 55	PX=9,	72[kN/m2]	
3 P3(3.	(EF) surfacique 3p (contour) 4, 10.5, 1.7) P4(0, 10.5, 1.7)	4	PZ1=-29,45[kN/m2] P1(0, 2, 1.7) F	P2(3.4, 2, 1.7)
14	(EF) surfacique uniforme 4	PZ=-	60,00[kN/m2]	
8 P3(3.	(EF) surfacique 3p (contour) 4, 2, 1.7) P4(0, 2, 1.7)	4	PZ1=-3,02[kN/m2] P1(0, 0, 1.7) P2	2(3.4, 0, 1.7)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 45,26

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées **Armatures adoptées** Ar At х1 **y1 x2 y2** φ [mm] / [cm] [cm2/m] [cm2/m] -0,00 -3,11 1,70 -0,00 10,0 / 25,0 0,78 < 1/1- Ax Principal 3,14 1/2-(1/3-) Ay Perpendiculaire 0,20 -3,11 1,70 -2,83 10,0 / 12,0 6.54 4,33 < 1/3- Ay Perpendiculaire -0,00 -3,11 1,70 -0,00 10,0 / 24,0 2,74 < 3,27

Ferraillage supérieur

Nom coordonnées **Armatures adoptées** At Ar **x1 v1 x2 y2** φ [mm] / [cm] [cm2/m] [cm2/m] 1/1+(1/2+) Ax Principal -0,00 -3,11 0,95 -0,94 10,0 / 8,0 8,93 < 9,82 1/2+ Ax Principal -0,00 -3,11 1,70 -0,00 10,0 / 16,0 4,03 < 4.91

1/3+(1/4+) Ay Perpendiculaire -0,00 -3,11 0,20 -2,83 10,0 / 12,0 4,47 < 6,54

1/4+ Ay Perpendiculaire -0,00 -3,11 1,70 -0,00 10,0 / 24,0 3,08 < 3,27

4. Quantitatif

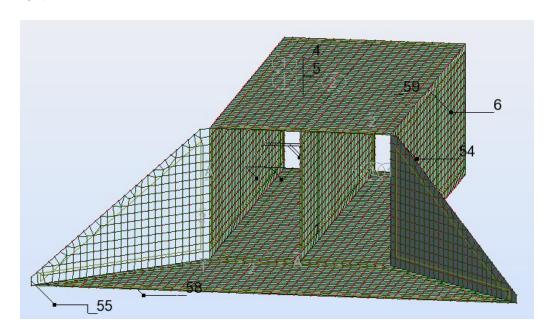
Volume de Béton = 0.79 (m3)

Surface de Coffrage = 3,17 (m2)

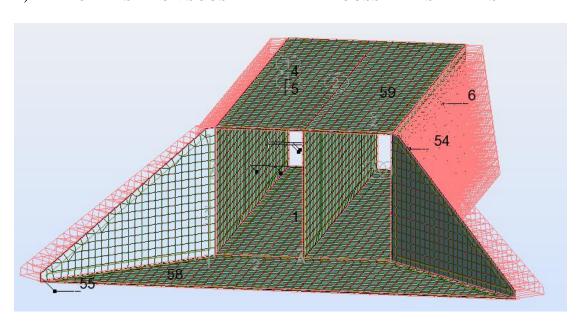
Périmètre de la dalle = 8,50 (m)

Superficie des réservations = 0,00 (m2)

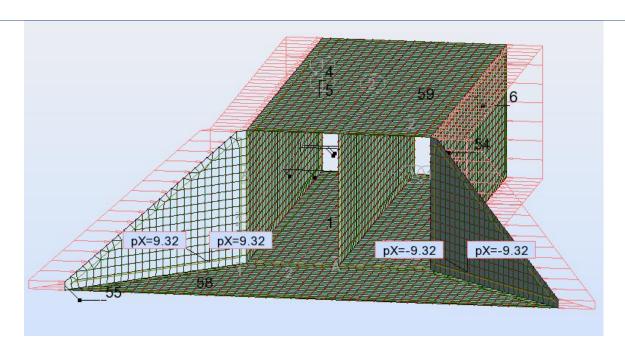
Acier HA 500

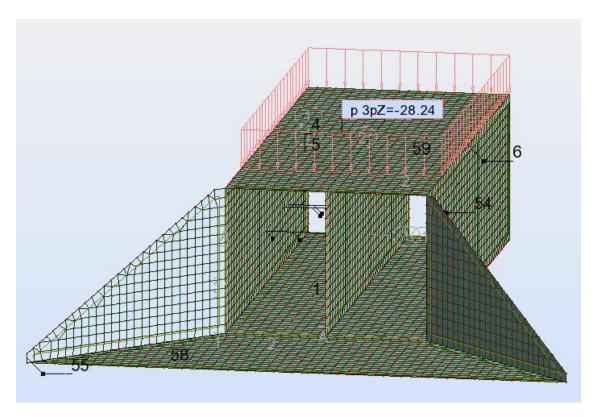

Poids total = 43,83 (kG)

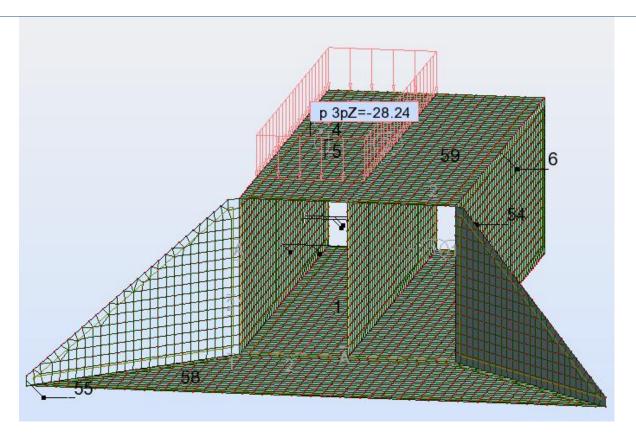
Densité = 55,34 (kG/m3)


Diamètre moyen = 10,0 (mm)

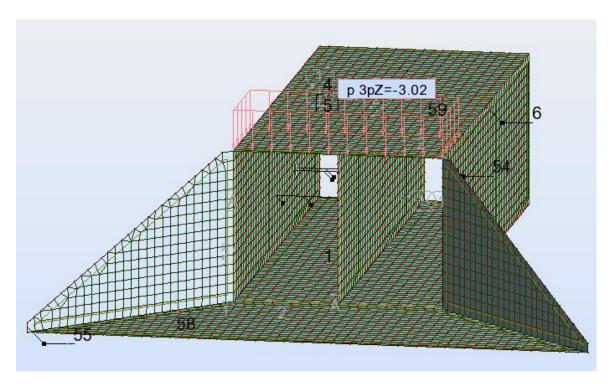
H)- DALOT DOUBLE 2x2x3

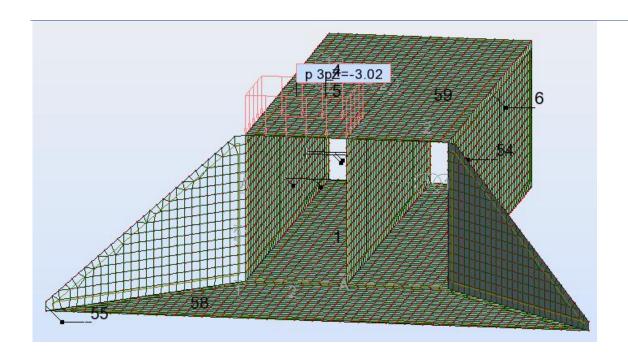

MODELISATION


ii) MODELISATION SOUS REMBLAI ET POUSSEE DES TERRES



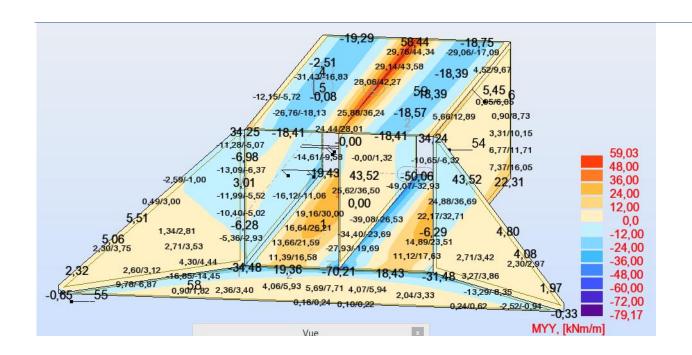
ii) MODELISATION SOUS SURCHARGE SUR REMBLAI




iii) MODELISATION SOUS SURCHAGE DU AU SYSTEME Bt



iV) MODELISATION SOUS SURCHAGE SUR TROTTOIR



V) CARTOGRAPHIE DES MOMENTS SENS XX

vi) CARTOGRAPHIE DES MOMENTS SENS YY

Vii CALCUL DU TABLIER

1. Dalle: Dalle4 - panneau n° 4

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1.4 (cm) d2 = 1.4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 0 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,30 (m)

Contour:

bord	début fin		longueur			
	x1	y1	x2	y2	(r	n)
1	0,00	-4,40	10,50	-4,40	10,50	
2	10,50	-4,40	10,50	0,00	4,40	
3	10,50	0,00	0,00	0,00	10,50	
4	0.00	0,00	0,00	-4,40	4,40	

Appui:

n°	Nom dime	nsions	coordonné	bord	
	(m)	X	у		
0	linéaire	0,25 /	10,50 5,25	-4,40	_
0	linéaire	0,25 /	10,50 5,25	-2,20 252	_

0 linéaire 0,25 / 10,50 5,25 0,00 —

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+)$$
 $Ax(-)$ $Ay(+)$ $Ay(-)$

Ferraillage réelle (cm2/m):

2,39 2,01 11,83 7,00

Ferraillage théorique modifié (cm2/m):

1,83 1,59 10,43 6,22

Ferraillage théorique primaire (cm2/m):

1,83 1,59 10,43 6,22

Coordonnées (m):

1,19;-2,20 5,40;-3,40 0,20;-2,20 0,00;-3,60

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m) **1,83/2,39** 0,10/2,39 1,26/2,39 0,16/2,39

Ax(-) (cm2/m) 0,09/1,01 **1,59/2,01** 0,08/1,01 0,33/2,01

Ay(+) (cm2/m) 10,07/11,83 0,51/11,83 **10,43/11,83** 0,69/11,83

Ay(-) (cm2/m) 0,52/7,00 5,70/7,00 0,55/7,00 **6,22/7,00**

ELS

Mxx (kN*m/m) 11,48 -7,03 8,00 -0,44

Myy (kN*m/m) 56,33 -32,3758,44 -35,63

Mxy (kN*m/m) 0,32 0,84 0,69 -0,17

^{* -} présence du chapiteau

ELU

Mxx (kN*m/m)	11,48 -7,03 8,00	-0,44
Myy (kN*m/m)	56,33 -32,3758,44	-35,63

Coordonnées (m) 1,19;-2,20 5,40;-3,40 0,20;-2,20 0,00;-3,60

Coordonnées* (m) 2,20;9,31;3,20 1,00;5,10;3,20 2,20;10,30;3,20 0,80;10,50;3,20

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 2.1 \text{ (cm)} <= fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58 59)	PZ Moins	
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=6,20[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=6,20[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=6,20[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=6,20[m]	Direction=-Z
2	(EF) surfacique uniforme 6	PX=-9	9,32[kN/m2]	
2	(EF) surfacique uniforme 5	PX=9	,32[kN/m2]	
2	(EF) surfacique uniforme 54	PX=-9	9,32[kN/m2]	
2	(EF) surfacique uniforme 55	PX=9	,32[kN/m2]	
3 P3(4	(EF) surfacique 3p (contour) 4, 10.5, 3.2) P4(0, 10.5, 3.2)	4	PZ1=-28,24[kN/m2] P1(0, 2, 3.2) I	P2(4.4, 2, 3.2)
14	(EF) surfacique uniforme 4	PZ=	-60,00[kN/m2]	

^{* -} Coordonnées dans le repère global de la structure

8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 3.2) P2(4.4, 0, 3.2) P3(4.4, 2, 3.2) P4(0, 2, 3.2)

4 (EF) surfacique 3p (contour) 4 PZ1=-28,24[kN/m2] P1(0, 2, 3.2) P2(2.2, 2, 3.2) P3(2.2, 10.5, 3.2) P4(0, 10.5, 3.2)

15 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 3.2) P2(2.2, 0, 3.2) P3(2.2, 2, 3.2) P4(0, 2, 3.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELS/16 (4+15+1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 842,72

2 - 880,64

3 - 948,81

4 - 1049,11

5 - 1141,43

6 - 1198,10

7 - 1304,41

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées		Arma	Armatures adoptées			At	Ar					
	x 1	y1	x2	y2	φ [mm] / [cm	n]	[cm2/	m]	[cm2	/m]	
1/1-	Ax Prin	cipal	0,00	-4,40	10,50	0,00	8,0 / 2	25,0	1,59	<	2,01	
1/2-	Av Perr	pendicu	ulaire	0.00	-4,40	10,50	0.00	14,0 /	22,0	6,22	<	7,00

Ferraillage supérieur

Nom coordonnées			Armatures adoptées			At	Ar						
		x1	y1	x2	y2	φ [mm	n] / [cm	i]	[cm2/	m]	[cm2/	m]	
	1/1+	Ax Prir	ncipal	0,00	-4,40	10,50	0,00	8,0 / 2	1,0	1,83	<	2,39	
	1/2+	Ay Per	rpendic	ulaire	0,00	-4,40	10,50	0,00	16,0 /	17,0	10,43	<	11,83

4. Quantitatif

Volume de Béton = 13,86 (m3)

Surface de Coffrage = 46,20 (m2)

Périmètre de la dalle = 29,80 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 812,66 (kG)

Densité = 58,63 (kG/m3)

Diamètre moyen = 12,1 (mm)

Vii CALCUL DU RADIER

1. Dalle: Dalle1 - panneau n° 1

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1.4 (cm) d2 = 1.4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 0 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,30 (m)

Contour:

bord	début	fin	longu		
	x1	y1	x2	y2	(m)
1	0,00	4,40	10,50	4,40	10,50
2	10,50	4,40	10,50	0,00	4,40
3	10,50	0,00	0,00	0,00	10,50
4	0,00	0,00	0,00	4,40	4,40

Appui:

n°	Nom dime	Nom dimensions coordonnées						
	(m)	x	у					
0	linéaire	0,25 /	10,50 5,25	4,40				
0	linéaire	0,25 /	10,50 5,25	2,20	_			
0	linéaire	0,25 /	10,50 5,25	0,00	_			

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

Ferraillage théorique modifié (cm2/m):

Ferraillage théorique primaire (cm2/m):

Coordonnées (m):

7,00;3,60 0,00;2,20 10,40;1,00 0,00;2,20

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	1,49/1,66	0,78/1,66	0,60/1,66	0,78/1,66
Ax(-) (cm2/m)	0,12/16,53	14,14/16,53	0,32/16,53	14,14/16,53
Ay(+) (cm2/m)	5,99/8,38	0,74/8,38	7,66/8,38	0,74/8,38
Ay(-) (cm2/m)	0,64/14,28	13,81/14,28	0,36/14,28	13,81/14,28
ELS				
Mxx (kN*m/m)	6,78 -81,36	61,07 -81,36	6	

Myy (kN*m/m) 34,36 -76,3243,52 -76,32

Mxy (kN*m/m)1,09 1,51 0,67 1,51

ELU

Mxx (kN*m/m)6,78 -81,361,07 -81,36

Myy (kN*m/m) 34,36 -76,3243,52 -76,32

Mxy (kN*m/m) 1,09 1,51 0,67 1,51

Coordonnées (m) 7,00;3,60 0,00;2,20 10,40;1,00 0,00;2,20

Coordonnées* (m) 0,80;7,00;0,00 2,20;0,00;0,00 3,40;10,40;0,00

2,20;0,00;0,00

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 2.3 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

^{* -} Coordonnées dans le repère global de la structure

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58 59		PZ Moins
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=6,20[m]
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=6,20[m] Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=6,20[m]
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=6,20[m] Direction=-Z
2	(EF) surfacique uniforme 6	PX=-9	,32[kN/m2]
2	(EF) surfacique uniforme 5	PX=9,	32[kN/m2]
2	(EF) surfacique uniforme 54	PX=-9	,32[kN/m2]
2	(EF) surfacique uniforme 55	PX=9,	32[kN/m2]
3 P3(4.	(EF) surfacique 3p (contour) 4, 10.5, 3.2) P4(0, 10.5, 3.2)	4	PZ1=-28,24[kN/m2] P1(0, 2, 3.2) P2(4.4, 2, 3.2)
14	(EF) surfacique uniforme 4	PZ=-	60,00[kN/m2]
8 P3(4.	(EF) surfacique 3p (contour) 4, 2, 3.2) P4(0, 2, 3.2)	4	PZ1=-3,02[kN/m2] P1(0, 0, 3.2) P2(4.4, 0, 3.2)
4 P3(2.	(EF) surfacique 3p (contour) 2, 10.5, 3.2) P4(0, 10.5, 3.2)	4	PZ1=-28,24[kN/m2] P1(0, 2, 3.2) P2(2.2, 2, 3.2)
15 P3(2.	(EF) surfacique 3p (contour) 2, 2, 3.2) P4(0, 2, 3.2)	4	PZ1=-3,02[kN/m2] P1(0, 0, 3.2) P2(2.2, 0, 3.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELS/16 (4+15+1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 1482,21
- 2 1651,59
- 3 1713,65
- 4 1958,34
- 5 2029,74
- 6 2398,66
- 7 2480,46
- 8 2849,38
- 9 3308,18
- 10 4668,42

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom	Nom coordonnées Armatures adoptées			At	Ar							
	x1	y1	x2	y2	φ [mm	n] / [cm	n]	[cm2/	m]	[cm2/	m]	
1/1-	Ax Prin	cipal	0,00	0,00	10,50	4,40	20,0/	19,0	14,14	<	16,53	
1/2-	Ay Per	pendici	ulaire	0,00	0,00	10,50	4,40	20,0/	22,0	13,81	<	14,28

Ferraillage supérieur

Nom coordonnées Armatures adoptées At Ar

x1 y1 x2 y2 \(\phi[mm]/[cm] \) [cm2/m] [cm2/m]

1/1+ Ax Principal 0,00 0,00 10,50 4,40 6,0 / 17,0 1,49 < 1,66

1/2+ Ay Perpendiculaire 0,00 0,00 10,50 4,40 16,0 / 24,0 7,66 < 8,38

4. Quantitatif

Volume de Béton = 13,86 (m3)

Surface de Coffrage = 46,20 (m2)

Périmètre de la dalle = 29,80 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 1468,07 (kG)

Densité = 105,92 (kG/m3)

Diamètre moyen = 15,0 (mm)

Viii CALCUL DU PIEDROIT

1. Dalle: Dalle5 - panneau n° 5

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1.4 (cm) d2 = 1.4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 0 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début	fin	longu		
	x1	y1	x2	y2	(m)
1	0,00	-3,20	10,50	-3,20	10,50
2	10,50	-3,20	10,50	0,00	3,20
3	10,50	0,00	0,00	0,00	10,50
4	0,00	0,00	0,00	-3,20	3,20

Appui:

n°	Nom	dime	bord				
		(m)	X	у			
0	linéair	е	0,30 /	10,50	5,25	-3,20	

0 linéaire 3,20 / 0,25 0,00 -1,60 —

0 linéaire 0,30 / 10,50 5,25 0,00 —

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

3,41 3,14 1,57 0,00

Ferraillage théorique modifié (cm2/m):

3,17 2,76 1,38 7,37

Ferraillage théorique primaire (cm2/m):

3,17 2,76 1,38 7,37

Coordonnées (m):

0,00;-0,80 0,00;0,00 0,00;0,00 0,00;-3,20

1.5.2. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	3,17/3,41	2,57/3,41	2,57/3,41	0,20/3,41
Ax(-) (cm2/m)	1,39/3,14	2,76/3,14	2,76/3,14	1,99/3,14
Ay(+) (cm2/m)	0,78/1,57	1,38/1,57	1,38/1,57	0,04/1,57
Ay(-) (cm2/m)	0,06/8,04	5,58/0,00	5,58/0,00	7,37/0,00

^{* -} présence du chapiteau

ELS

Mxx (kN*m/m)	14,47 -13,53	-13,53-5,98		
Myy (kN*m/m)	2,92 -21,55	-21,55-30,19)	
Mxy (kN*m/m)	2,02 -2,01	-2,01 -4,79		
ELU				
Mxx (kN*m/m)	14,47 -13,53	-13,53-5,98		
Myy (kN*m/m)	2,92 -21,55	-21,55-30,19)	
Mxy (kN*m/m)	2,02 -2,01	-2,01 -4,79		
Coordonnées (m)	0,00;-0,80	0,00;0,00	0,00;0,00	0,00;-3,20
Coordonnées* (m) 0,00;0,00;0,00	0,00;0,00;2,40	0,00;0	,00;3,20	0,00;0,00;3,20

^{* -} Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \ll fdop(+) = 3.0 \text{ (cm)}$$

 $|f(-)| = 0.2 \text{ (cm)} \ll fdop(-) = 3.0 \text{ (cm)}$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58 59		PZ Moins	
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=6,20[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=6,20[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=6,20[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=6,20[m]	Direction=-Z
2	(EF) surfacique uniforme 6	PX=-9),32[kN/m2]	
2	(EF) surfacique uniforme 5	PX=9,	32[kN/m2]	

- 2 (EF) surfacique uniforme 54 PX=-9,32[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=9,32[kN/m2]
- 3 (EF) surfacique 3p (contour) 4 PZ1=-28,24[kN/m2] P1(0, 2, 3.2) P2(4.4, 2, 3.2) P3(4.4, 10.5, 3.2) P4(0, 10.5, 3.2)
- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 3.2) P2(4.4, 0, 3.2) P3(4.4, 2, 3.2) P4(0, 2, 3.2)
- 4 (EF) surfacique 3p (contour) 4 PZ1=-28,24[kN/m2] P1(0, 2, 3.2) P2(2.2, 2, 3.2) P3(2.2, 10.5, 3.2) P4(0, 10.5, 3.2)
- 15 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 3.2) P2(2.2, 0, 3.2) P3(2.2, 2, 3.2) P4(0, 2, 3.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELS/16 (4+15+1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 426,64
- 2 549,23
- 3 549,23
- 4 597,39

5	-	597,39
6	-	614,96
7	-	614,96
8	-	701,17

9 - 848,80

10 - 1326,26

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom	coordonnées		Armatures adoptées			At	Ar					
	x1	y1	x2	y2	φ [mm	φ [mm] / [cm] [d		[cm2/m]		[cm2/m]		
1/1-	Ax Prin	cipal	0,00	-3,20	10,50	0,00	8,0 / 1	6,0	2,76	<	3,14	
1/2-	Av Perr	pendicu	ulaire	0.00	-3.20	10.50	0.00	16.0 /	25.0	7.37	<	8.04

Ferraillage supérieur

Nom coordonnée		es	Armatures adoptées			es	At	Ar				
	x1	y1	x2	y2	φ [mm	n] / [cm	n]	[cm2	/m]	[cm2	/m]	
1/1+	Ax Prir	ncipal	0,00	-3,20	10,50	0,00	10,0 /	23,0	3,17	<	3,41	
1/2+	Av Per	pendic	ulaire	0.00	-3.20	10.50	0.00	6.0 /	18.0	1.38	<	1.57

4. Quantitatif

Volume de Béton = 8,40 (m3)

Surface de Coffrage = 33,60 (m2)

Périmètre de la dalle = 27,40 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 415,56 (kG)

Densité = 49,47 (kG/m3)

Diamètre moyen = 9,5 (mm)

IX CALCUL DU MUR EN AILE

1. Dalle: Dalle55 - panneau n° 55

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 0 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début fin		longu	longueur				
	x1	y1	x2	y2		(m)		
1	0,00	5,23	3,20	5,23	3,20			
2	3,20	5,23	3,20	4,95	0,28			
3	3,20	4,95	0,20	0,00	5,79			
4	0,20	0,00	0,00	0,00	0,20	260		

5 0,00 0,00 0,00 5,23 5,23

Appui:

n° Nom dimensions coordonnées bord

(m) x y

0 linéaire 0,25 / 3,20 1,60 5,23 —

0 linéaire 5,23 / 0,30 0,00 2,62 —

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

10,26 1,41 7,33 3,74

Ferraillage théorique modifié (cm2/m):

9,81 1,37 4,87 3,26

Ferraillage théorique primaire (cm2/m):

9,81 1,37 4,87 3,26

Coordonnées (m):

0,00;5,23 3,00;5,23 0,00;5,23 2,40;5,23

1.5.2. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	9,81/10,26	1,66/10,26	9,81/10,26	0,04/10,26
Ax(-) (cm2/m)	0,07/1,41	1,37/1,41	0,07/1,41	0,72/1,41
Ay(+) (cm2/m)	4,87/7,33	2,14/7,33	4,87/7,33	1,22/7,33
Ay(-) (cm2/m)	0,25/3,74	2,29/3,74	0,25/3,74	3,26/3,74

^{* -} présence du chapiteau

ELS

Mxx (kN*m/m)	42,74 3,60 42,74 -2,94
Myy (kN*m/m)	17,63 -10,2017,63 -14,67
Mxy (kN*m/m)	5,37 -1,45 5,37 -1,79

ELU

Mxx (kN*m/m)	42,74	3,60	42,74	-2,94
Myy (kN*m/m)	17,63	-10,20	17,63	-14,67
Mxy (kN*m/m)	5,37	-1,45	5,37	-1,79

1.5.4. Flèche

$$|f(+)| = 0.6 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

 $|f(-)| = 0.0 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 54 55 58 59		PZ Moins	
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=6,20[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=6,20[m]	Direction=-Z
1	(EF) pression hydrostatique	54	Gamma=-6,60[kG/m3] H=6,20[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=6,20[m]	Direction=-Z

^{* -} Coordonnées dans le repère global de la structure

- 2 (EF) surfacique uniforme 6 PX=-9,32[kN/m2]
- 2 (EF) surfacique uniforme 5 PX=9,32[kN/m2]
- 2 (EF) surfacique uniforme 54 PX=-9,32[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=9,32[kN/m2]
- 3 (EF) surfacique 3p (contour) 4 PZ1=-28,24[kN/m2] P1(0, 2, 3.2) P2(4.4, 2, 3.2) P3(4.4, 10.5, 3.2) P4(0, 10.5, 3.2)
- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 3.2) P2(4.4, 0, 3.2) P3(4.4, 2, 3.2) P4(0, 2, 3.2)
- 4 (EF) surfacique 3p (contour) 4 PZ1=-28,24[kN/m2] P1(0, 2, 3.2) P2(2.2, 2, 3.2) P3(2.2, 10.5, 3.2) P4(0, 10.5, 3.2)
- 15 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 3.2) P2(2.2, 0, 3.2) P3(2.2, 2, 3.2) P4(0, 2, 3.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELS/16 (4+15+1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 166,47
- 2 179,12

3	-	186,67	
4	-	194,97	
5	-	208,46	
6	-	218,88	
7	-	224,59	
8	-	235,01	
9	-	254,02	
10	-	367,86	

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées		Arma	Armatures adoptées			At	Ar					
	x1	y 1	x2	y2	φ [mn	n] / [cn	n]	[cm2	/m]	[cm2	/m]	
1/1-	Ax Prin	cipal	0,00	0,00	3,20	5,23	6,0 / 2	20,0	1,37	<	1,41	
1/2-	Av Per	pendic	ulaire	0.00	0.00	3.20	5.23	10.0 /	21.0	3.26	<	3,74

Ferraillage supérieur

Nom coordonnées		Armatures adoptées			At	Ar							
	x1	y1	x2	y2	φ [mn	n] / [cn	n]	[cm2/	m]	[cm2	/m]		
1/1+(1/2+)	Ax Prin	cipal	0,00	0,00	2,20	5,23	14,0 /	15,0	9,81	<	10,26	
1/2+	Ax Pri	ncipal	2,20	2,97	3,20	5,23	14,0 /	15,0	2,34	<	10,26		
1/3+(1/4+)	Ay Perp	pendicu	ulaire	0,00	0,00	2,20	5,23	14,0 /	21,0	4,87	<	7,33
1/4+	Ay Pe	rpendic	ulaire	2,20	2,97	3,20	5,23	14,0 /	21,0	2,14	<	7,33	

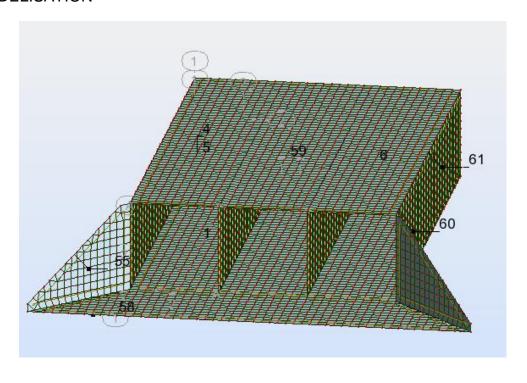
4. Quantitatif

Volume de Béton = 2,33 (m3)

Surface de Coffrage = 9,32 (m2)

Périmètre de la dalle = 14,70 (m)

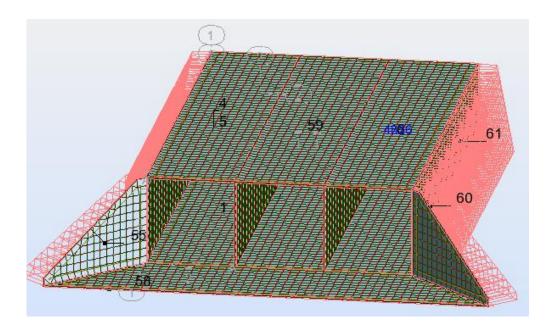
Superficie des réservations = 0,00 (m2)

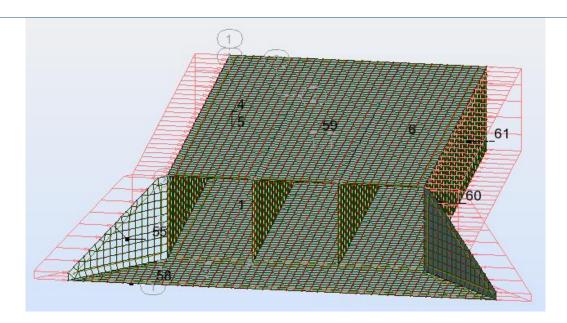

Acier HA 500

Poids total = 151,36 (kG)

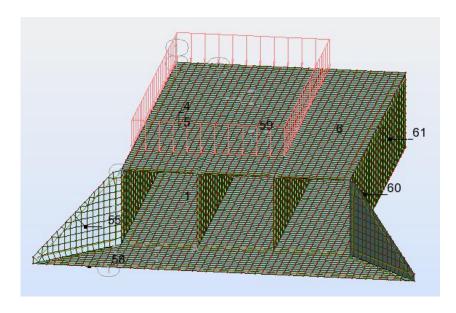
Densité = 64,97 (kG/m3)

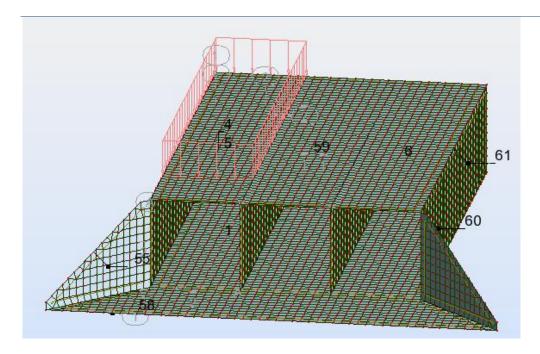
E-DALOT 3x2x2


MODELISATION

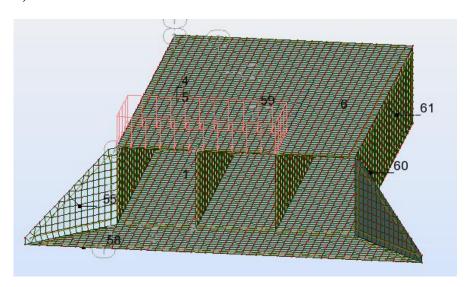

ii)

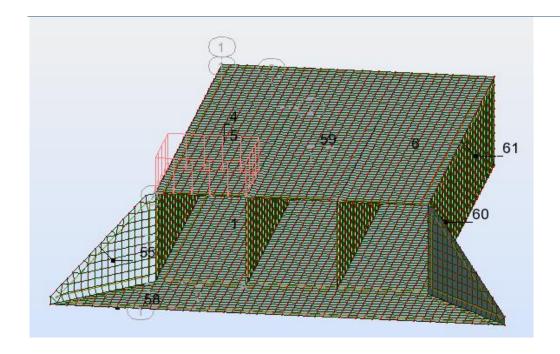
MODELISATION SOUS REMBLAI ET POUSSEE DES TERRES

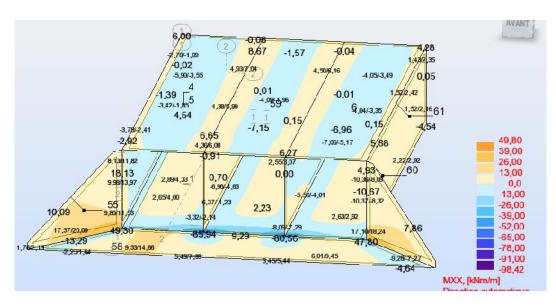




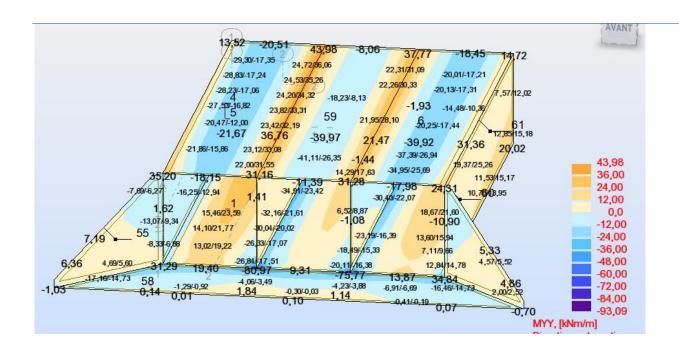
iii) MODELISATION SOUS SURCHARGE SUR REMBLAI




iv) MODELISATION SOUS SURCHAGE DU AU SYSTEME Bt



v) MODELISATION SOUS SURCHAGE SUR TROTTOIR



vi) CARTOGRAPHIE DES MOMENTS SENS XX

vii) CARTOGRAPHIE DES MOMENTS SENS YY

viii CALCUL DU TABLIER

1. Dalle: Dalle4 - panneau n° 4

1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,30 (m)

Contour:

bord	début fin		longue			
	x1	y1	x2	y2		(m)
1	0,00	-6,60	10,50	-6,60	10,50	
2	10,50	-6,60	10,50	0,00	6,60	
3	10,50	0,00	0,00	0,00	10,50	
						280

4 0,00 0,00 0,00 -6,60 6,60

Appui:

n° Nom dimensions coordonnées bord

(m) x y

0 linéaire 0,25 / 10,50 5,25 0,00 —

0 linéaire 0,25 / 10,50 5,25 -6,60 —

0 linéaire 0,25 / 10,50 5,25 -4,40 —

0 linéaire 0,25 / 10,50 5,25 -2,20 —

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+)$$
 $Ax(-)$ $Ay(+)$ $Ay(-)$

Ferraillage réelle (cm2/m):

Ferraillage théorique modifié (cm2/m):

Ferraillage théorique primaire (cm2/m):

Coordonnées (m):

^{* -} présence du chapiteau

0,99;-4,40 7,80;-5,40 0,20;-4,40 0,00;-5,80

1.5.2. Moments maximaux + ferraillage pour la flexion

$$Ax(+)$$
 $Ax(-)$ $Ay(+)$ $Ay(-)$

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	1,72/3,14	0,00/0,00	1,35/3,14	0,00/0,00
Ax(-) (cm2/m)	0,00/1,57	1,55/3,14	0,04/1,57	0,34/3,14
Ay(+) (cm2/m)	9,59/10,72	0,00/10,72	9,89/10,72	0,00/7,92
Ay(-) (cm2/m)	0,00/10,72	6,22/10,72	0,00/9,82	7,35/10,72

ELS

Mxx (kN*m/m)	8,67	-6,99	6,82	-0,46
Myy (kN*m/m)	42,56	-25,43	43,98	-33,13
Mxy (kN*m/m)	0,36	1,15	0,79	-0,34

Coordonnées (m) 0,99;-4,40 7,80;-5,40 0,20;-4,40 0,00;-5,80 Coordonnées* (m) 2,20;9,51;2,20 1,20;2,70;2,20 2,20;10,30;2,20 0,80;10,50;2,20

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 2.1 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

^{* -} Coordonnées dans le repère global de la structure

2. Chargements:

Cas	Type Liste Valeur						
1	poids propre 1 4A6 55 58A61	PZ Moins					
1	(EF) pression hydrostatique	61	Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z				
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,70[m] Direction=-Z				
1	(EF) pression hydrostatique	60	Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z				
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z				
2	(EF) surfacique uniforme 61	PX=-9	,62[kN/m2]				
2	(EF) surfacique uniforme 5	PX=9,	62[kN/m2]				
2	(EF) surfacique uniforme 60	PX=-9,62[kN/m2]					
2	(EF) surfacique uniforme 55	PX=9,	62[kN/m2]				
3 P3(4.4	(EF) surfacique 3p (contour) 4, 10.5, 2.2) P4(0, 10.5, 2.2)	4	PZ1=-29,15[kN/m2] P1(0, 2, 2.2) P2(4.4, 2, 2.2)				
14	(EF) surfacique uniforme 4	PZ=-	60,00[kN/m2]				
8 P3(4.4	(EF) surfacique 3p (contour) 4, 2, 2.2) P4(0, 2, 2.2)	4	PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(4.4, 0, 2.2)				
4 P3(2.2	(EF) surfacique 3p (contour) 2, 10.5, 2.2) P4(0, 10.5, 2.2)	4	PZ1=-29,15[kN/m2] P1(0, 2, 2.2) P2(2.2, 2, 2.2)				
15 P3(2.2	(EF) surfacique 3p (contour) 2, 2, 2.2) P4(0, 2, 2.2)	4	PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 0, 2.2)				

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELS/16 (4+15+1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 987,35

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées Armatures adoptées At Ar

x1 y1 x2 y2 $\square\square[mm]/[cm]$ [cm2/m] [cm2/m]

1/1- Ax Principal 0,00 -6,60 10,50 0,00 10,0 / 25,0 1,55 < 3,14

1/2-(1/3-) Ay Perpendiculaire 0,00 -6,60 9,45-4,57 14,0 / 12,5 7,35 < 10,72

1/3- Ay Perpendiculaire 0,00 -6,60 10,50 0,00 14,0 / 12,5 4,59 < 10,72

Ferraillage supérieur

Nom coordonnées Armatures adoptées At Ar

x1 y1 x2 y2 \square [mm] / [cm] [cm2/m] [cm2/m]

1/1+(1/6+) Ax Principal 0,53 -5,08 10,50 -1,52 10,0 / 25,0 1,72 < 3,14

1/2+(1/6+) Ax Principal 0.00 -6.60 0.53 0.00 10.0 / 25.0 1.69 < 3.14

1/3+(1/6+) Ax Principal 0.53 -6.60 10.50 -6.09 10.0 / 25.0 1.15 < 3.14

1/4+(1/6+) Ax Principal 0,53 -0,51 10,50 0,00 10,0 / 25,0 0,95 < 3,14

1/5+(1/6+) Ax Principal 9,45 -6,09	10,50 -5,08 10,0 / 25,0 0,27 <	3,14
1/6+ Ax Principal 9,98 -1,52 10,50	-0,51 10,0 / 25,0 0,05 < 3,14	
1/7+(1/15+) Ay Perpendiculaire 0,00 10,72	-5,0 1,0 5 -4,06 10,0 / 4,0	10,72 <
1/8+(1/15+) Ay Perpendiculaire 0,00 10,72	-5,08 10,50 -1,52 10,0 / 8,0	10,72 <
1/9+(1/15+) Ay Perpendiculaire 9,45 10,72	-6,60 10,50 -6,09 10,0 / 8,6	0 10,72 <
1/10+(1/15+) Ay Perpendiculaire9,98 10,72	-0,51 10,50 0,00 10,0 / 8,0	5,32 <
1/11+(1/15+) Ay Perpendiculaire0,00	-6,60 0,53 0,000,0 / 16,0 3,18	10,72
1/12+(1/15+) Ay Perpendiculaire 0,53	-6,60 10,50 -6,0910,0 / 16,0 4,82	10,72
1/13+(1/15+) Ay Perpendiculaire0,53 < 10,72	-0,51 10,50 0,00 10	,0 / 16,0 4,31
1/14+(1/15+) Ay Perpendiculaire9,45 10,72	-6,09 10,50 -5,08 10,0	/16,0 0,34 <
1/15+ Ay Perpendiculaire 9,98-1,52	10,50 -0,51 10,0 / 16,0 0,00 <	10,72

4. Quantitatif

Volume de Béton = 17,33 (m3)

Surface de Coffrage = 69,30 (m2)

Périmètre de la dalle = 34,20 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 1065,22 (kG)

Densité = 61,48 (kG/m3)

Diamètre moyen = 12,0 (mm)

viii CALCUL DU RADIER

- 1. Dalle: Dalle1 panneau n° 1
- 1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,30 (m)

Contour:

bord début fin longueur

	x1	y1	x2	y2		(m)
1	0,00	6,60	10,50	6,60	10,50	
2	10,50	6,60	10,50	0,00	6,60	
3	10,50	0,00	0,00	0,00	10,50	
4	0,00	0,00	0,00	6,60	6,60	

Appui:

n°	Nom	dimer	nsions	coord	onnée	bord	
		(m)	x	у			
0	linéai	re	0,25 /	10,50	5,25	0,00	
0	linéai	re	0,25 /	10,50	5,25	6,60	
0	linéai	re	0,25 /	10,50	5,25	4,40	_
0	linéai	re	0,25 /	10,50	5,25	2,20	

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+)$$
 $Ax(-)$ $Ay(+)$ $Ay(-)$

Ferraillage réelle (cm2/m):

Ferraillage théorique modifié (cm2/m):

Ferraillage théorique primaire (cm2/m):

1,26 21,83 8,19 20,89

Coordonnées (m):

9,20;5,80 0,00;4,40 10,50;5,60 0,00;4,40

1.5.2. Moments maximaux + ferraillage pour la flexion

$$Ax(+)$$
 $Ax(-)$ $Ay(+)$ $Ay(-)$

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	1,39/3,14	0,00/0,00	0,22/3,14	0,00/0,00
Ax(-) (cm2/m)	0,00/4,36	21,83/26,18	0,00/0,00	21,83/26,18
Ay(+) (cm2/m)	7,16/8,73	0,00/8,73	8,19/8,73	0,00/8,73
Ay(-) (cm2/m)	0,00/13,09	20,89/26,18	0,00/13,09	20,89/26,18

ELS

Coordonnées (m) 9,20;5,80 0,00;4,40 10,50;5,60 0,00;4,40 Coordonnées* (m) 0,80;9,20;0,00 2,20;0,00;0,00 1,00;10,50;0,00 2,20;0,00;0,00

^{* -} Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 1.9 \text{ (cm)} <= fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Va

- 1 poids propre 1 4A6 55 58A61 PZ Moins
- 1 (EF) pression hydrostatique 61 Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z
- 1 (EF) pression hydrostatique 5 Gamma=6,60[kG/m3] H=4,70[m] Direction=-Z
- 1 (EF) pression hydrostatique 60 Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z
- 1 (EF) pression hydrostatique 55 Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z
- 2 (EF) surfacique uniforme 61 PX=-9,62[kN/m2]
- 2 (EF) surfacique uniforme 5 PX=9,62[kN/m2]
- 2 (EF) surfacique uniforme 60 PX=-9,62[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=9,62[kN/m2]
- 3 (EF) surfacique 3p (contour) 4 PZ1=-29,15[kN/m2] P1(0, 2, 2.2) P2(4.4, 2, 2.2) P3(4.4, 10.5, 2.2) P4(0, 10.5, 2.2)
- 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(4.4, 0, 2.2) P3(4.4, 2, 2.2) P4(0, 2, 2.2)
- 4 (EF) surfacique 3p (contour) 4 PZ1=-29,15[kN/m2] P1(0, 2, 2.2) P2(2.2, 2, 2.2) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2)
- 15 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 0, 2.2) P3(2.2, 2, 2.2) P4(0, 2, 2.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELS/16 (4+15+1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 1665,06

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées Armatures adoptées Αt Ar x1 **v1** x2 ٧2 □ [mm] / [cm] [cm2/m] [cm2/m] 1/1-(1/3-) Ax Principal 0,00 0,00 0,53 6,60 10,0 / 3,0 21,83 < 26,18 1/2-(1/3-) Ax Principal 0,00 0,00 1,05 10,0 / 9,0 7,79 < 6,60 8,73 1/3- Ax Principal 0,00 0,00 10,50 6,60 10,0 / 18,0 2,10 < 4,36 1/4-(1/6-) Ay Perpendiculaire 1,52 0,53 5,08 10,0/3,0 0,00 20,89 < 26,18 1/5-(1/6-) Ay Perpendiculaire 10,50 5,08 10,0 / 3,0 26.18 6,30 4,06 13,31 < 1/6- Ay Perpendiculaire 0,00 0,00 10,50 6,60 10,0 / 6,0 11,05 < 13,09

Nom	coord	coordonnées Armatures adoptées						Ar					
	x1	y1	x2	y2	□ [mn	n] / [cm	n]	[cm2/	m]	[cm2/	m]		
1/1+	Ax Pri	ncipal	0,00	0,00	10,50	6,60	10,0/	25,0	1,39	<	3,14		
1/2+(1/5+)	Ay Perp	pendicu	ulaire	0,00	3,55	10,50	6,60	10,0 /	9,0	8,19	<	8,73
1/3+(1/5+)	Ay Perp	pendicu	ulaire	3,68	0,00	10,50	2,03	10,0 /	9,0	6,94	<	8,73
1/4+(1/5+)	Ay Perp	pendicu	ulaire	9,45	2,54	10,50	3,55	10,0 /	9,0	4,68	<	8,73
1/5+	Ay Pe	rpendic	ulaire	0,00	0,00	10,50	6,60	10,0/	18,0	4,33	<	4,36	

4. Quantitatif

Volume de Béton = 17,33 (m3)

Surface de Coffrage = 69,30 (m2)

Périmètre de la dalle = 34,20 (m)

Superficie des réservations = 0,00 (m2)

Acier HA 500

Poids total = 1767,72 (kG)

Densité = 102,03 (kG/m3)

Diamètre moyen = 10,0 (mm)

Liste par diamètres:

Diamètre Longueur Nombre:

(m)

10 0,94 182

10 1,46 36

- 10 1,64 70
- 10 2,44 32
- 10 3,46 52
- 10 4,08 8
- 10 6,54 240
- 10 10,44 64

x CALCUL DU PIEDROIT

- 1. Dalle: Dalle61 panneau n° 61
- 1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début	fin	longue			
	x1	y1	x2	y2		(m)
1	0,00	-2,20	10,50	-2,20	10,50	
2	10,50	-2,20	10,50	0,00	2,20	
3	10,50	0,00	0,00	0,00	10,50	
4	0.00	0.00	0.00	-2.20	2.20	

Appui:

0 linéaire 0,25 / 10,50 5,25 0,00 —

* - présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+)$$
 $Ax(-)$ $Ay(+)$ $Ay(-)$

Ferraillage réelle (cm2/m):

3,93 3,93 6,79 6,79

Ferraillage théorique modifié (cm2/m):

2,45 2,86 6,49 0,36

Ferraillage théorique primaire (cm2/m):

2,45 2,86 6,49 0,36

Coordonnées (m):

0,00;-2,20 0,00;0,00 0,00;-2,20 0,00;-0,80

1.5.2. Moments maximaux + ferraillage pour la flexion

$$Ax(+)$$
 $Ax(-)$ $Ay(+)$ $Ay(-)$

Symboles: section théorique/section réelle

Ax(+) (cm2/m) 2,45/0,00 0,00/0,00 2,45/0,00 0,00/0,00

Ax(-) (cm2/m) 0,00/0,00 2,86/0,00 0,00/0,00 2,73/3,14

Ay(+) (cm2/m)	6,49/6,79	4,59/6,54	6,496/6,79	0,30/6,54
Ay(-) (cm2/m)	0,00/0,00	0,00/0,00	0,00/0,00	0,36/6,54

ELS

Coordonnées (m) 0,00;-2,20 0,00;0,00 0,00;-2,20 0,00;-0,80 Coordonnées* (m) 6,60;0,00;0,00 6,60;0,00;2,20 6,60;0,00;0,00 6,60;0,00;1,40

1.5.4. Flèche

$$|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 0.2 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 55 58A61	PZ N	Moins	
1	(EF) pression hydrostatique	61	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,70[m]	Direction=-Z
1	(EF) pression hydrostatique	60	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z

^{* -} Coordonnées dans le repère global de la structure

1	(EF) pression hydrostatiqu	ıe	55	Gamma=-6,60[kG/m3] H=4,70[m]	Direction=-Z
2	(EF) surfacique uniforme	61	PX=-9	9,62[kN/m2]	
2	(EF) surfacique uniforme	5	PX=9	,62[kN/m2]	
2	(EF) surfacique uniforme	60	PX=-9	9,62[kN/m2]	
2	(EF) surfacique uniforme	55	PX=9	,62[kN/m2]	
3 P3(4.	(EF) surfacique 3p (contou 4, 10.5, 2.2) P4(0, 10.5, 2.2	•	4	PZ1=-29,15[kN/m2] P1(0, 2, 2.2) F	22(4.4, 2, 2.2)
14	(EF) surfacique uniforme	4	PZ=	-60,00[kN/m2]	
8 P3(4.	(EF) surfacique 3p (contou 4, 2, 2.2) P4(0, 2, 2.2)	ur)	4	PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2	2(4.4, 0, 2.2)
4 P3(2.:	(EF) surfacique 3p (contou 2, 10.5, 2.2) P4(0, 10.5, 2.2	,	4	PZ1=-29,15[kN/m2] P1(0, 2, 2.2) F	22(2.2, 2, 2.2)
15 P3(2.:	(EF) surfacique 3p (contou 2, 2, 2.2) P4(0, 2, 2.2)	ur)	4	PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2	2(2.2, 0, 2.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELS/16 (4+15+1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 275,87

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom	coord	donnée	s Arma	tures a	doptée	S	At	Ar					
	x1	y1	x2	y2	□□[m	m] / [cr	m]	[cm2/	m]	[cm2/	m]		
1/1- /	Ax Prir	ncipal	0,00	-2,20	10,50	0,00	10,0/	25,0	2,86	<	3,93		
1/2-(1	/6-) A	y Perp	endicul	aire0,0	0-2,20	0,95	-1,47	12,0	16,0	0,00	<	6,79	
1/3-(1	/6-) A	y Perp	endicul	aire0,0	0-2,20	0,95	0,00	12,0 /	16,0	0,36	<	6,79	
1/4-(1	1/4-(1/6-) Ay Perpendiculaire0,95 -0,731,910,00												
1/5-(1	/6-) A	y Perp	endicul	aire	4,77	-2,20	10,50	-1,47	10,0	/ 12,0	0,00	<	6,79
1/6- /	Ay Per	pendic	ulaire	0,00	-2,20	10,50	0,00	10,0	24,0	0,00	<	6,79	

Ferraillage supérieur

Nom	coor	données	s Arma	tures a	doptée	s	At	Ar					
	x1	y1	x2	y2	□ [mn	n] / [cm]	[cm2/	m]	[cm2/	'm]		
1/1+	Ax Pr	incipal	0,00	-2,20	10,50	0,00	10,0/	25,0	2,45	<	3,14		
1/2+	(1/6+)	Ay Perp	pendic	ulaire	0,00	-2,20	0,95	-1,47	10,0 / 6	5,0	6,49	<	6,79
1/3+	(1/6+)	Ay Perp	pendic	ulaire	0,00	-2,20	0,95	0,001	0,0 / 1	2,0	6,59	<	6,76
1/4+	(1/6+)	Ay Perp	pendic	ulaire	0,95	-0,73	1,91	0,001	0,0 / 1	2,0	6,63	<	6,79
1/5+	(1/6+)	Ay Perp	pendic	ulaire	4,77	-2,20	10,50	-1,47	10,0 / 1	12,0	6,45	<	6,79
1/6+	Ау Ре	rpendic	ulaire	0,00	-2,20	10,50	0,001	0,0 / 24	4,0	6,18	<	6,79	

4. Quantitatif

Volume de Béton = 5.78 (m3)

Surface de Coffrage = 23,10 (m2)

Périmètre de la dalle = 25,40 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 264,84 (kG)

Densité = 45,86 (kG/m3)

Diamètre moyen = 12 (mm)

xi CALCUL DU MUR EN AILE

- 1. Dalle: Dalle60 panneau n° 60
- 1.1. Ferraillage:

Type: DALOT

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON25; résistance caractéristique = 25,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 1 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

début	fin	longu			
x1	y1	x2	y2		(m)
-0,00	-3,11	2,20	-3,11	2,20	
2,20	-3,11	2,20	-2,83	0,28	
2,20	-2,83	0,20	0,00	3,46	
0,20	0,00	-0,00	0,00	0,20	200
	x1 -0,00 2,20 2,20	x1 y1 -0,00 -3,11 2,20 -3,11 2,20 -2,83	x1 y1 x2 -0,00 -3,11 2,20 2,20 -3,11 2,20 2,20 -2,83 0,20	-0,00 -3,11 2,20 -3,11 2,20 -3,11 2,20 -2,83 2,20 -2,83 0,20 0,00	G

5 -0,00 0,00 -0,00 -3,11 3,11

Appui:

n° Nom dimensions coordonnées bord

(m) x y

0 linéaire 3,11 / 0,25 0,00 -1,56 —

0 linéaire 0,25 / 2,20 1,10 -3,11 —

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+)$$
 $Ax(-)$ $Ay(+)$ $Ay(-)$

Ferraillage réelle (cm2/m):

3,93 3,93 9,05 9,05

Ferraillage théorique modifié (cm2/m):

Ferraillage théorique primaire (cm2/m):

Coordonnées (m):

1.5.2. Moments maximaux + ferraillage pour la flexion

^{* -} présence du chapiteau

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	8,74/9,05	0,34/7,85	10,74/15,71	0,98/3,93
Ax(-) (cm2/m)	0,00/0,00	0,31/7,85	0,00/0,00	0,23/3,93
Ay(+) (cm2/m)	4,74/5,61	0,00/0,00	4,74/5,61	0,00/0,00
Ay(-) (cm2/m)	0,00/0,00	2,91/5,61	0,00/0,00	3,47/5,61

ELS

1.5.4. Flèche

$$|f(+)| = 0.2 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 0.0 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

^{* -} Coordonnées dans le repère global de la structure

1 poids propre 1 4A6 55 58A61 PZ Moins 1 (EF) pression hydrostatique 61 Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z 1 (EF) pression hydrostatique 5 Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z 1 (EF) pression hydrostatique 55 Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z 1 (EF) pression hydrostatique 55 Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z 2 (EF) surfacique uniforme 61 PX=-9,62[kN/m2] 2 (EF) surfacique uniforme 60 PX=-9,62[kN/m2] 2 (EF) surfacique uniforme 60 PX=-9,62[kN/m2] 3 (EF) surfacique 3p (contour) 4 PZ1=-29,15[kN/m2] P1(0, 2, 2.2) P2(4.4, 2, 2.2) 14 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(4.4, 0, 2.2) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 2, 2.2) 4 PZ1=-29,15[kN/m2] P1(0, 0, 2.2) P2(2.2, 2, 2.2) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 0, 2.2) 5 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 0, 2.2)	Cas	Type Liste Valeur		
1 (EF) pression hydrostatique 5 Gamma=6,60[kG/m3] H=4,70[m] Direction=-Z 1 (EF) pression hydrostatique 60 Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z 1 (EF) pression hydrostatique 55 Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z 2 (EF) surfacique uniforme 61 PX=-9,62[kN/m2] 2 (EF) surfacique uniforme 5 PX=9,62[kN/m2] 2 (EF) surfacique uniforme 60 PX=-9,62[kN/m2] 2 (EF) surfacique uniforme 55 PX=9,62[kN/m2] 3 (EF) surfacique 3p (contour) P3(4.4, 10.5, 2.2) P4(0, 10.5, 2.2) 14 (EF) surfacique 3p (contour) P3(4.4, 2, 2.2) P4(0, 2, 2.2) 4 (EF) surfacique 3p (contour) P3(4.4, 2, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P2(2.2, 0, 2.2) P2(2.2, 0, 2.2)	1	poids propre 1 4A6 55 58A61	PZ N	Moins
1 (EF) pression hydrostatique 55 Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z 1 (EF) pression hydrostatique 55 Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z 2 (EF) surfacique uniforme 61 PX=-9,62[kN/m2] 2 (EF) surfacique uniforme 5 PX=9,62[kN/m2] 2 (EF) surfacique uniforme 60 PX=-9,62[kN/m2] 2 (EF) surfacique uniforme 55 PX=9,62[kN/m2] 3 (EF) surfacique 3p (contour) P3(4.4, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(4.4, 2, 2.2) P4(0, 2, 2.2) P4(0, 2, 2.2) 4 (EF) surfacique 3p (contour) P3(4.4, 2, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 2, 2.2) 5 (EF) surfacique 3p (contour) PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 0, 2.2)	1	(EF) pression hydrostatique	61	Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z
1 (EF) pression hydrostatique 55 Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z 2 (EF) surfacique uniforme 61 PX=-9,62[kN/m2] 2 (EF) surfacique uniforme 5 PX=9,62[kN/m2] 2 (EF) surfacique uniforme 60 PX=-9,62[kN/m2] 2 (EF) surfacique uniforme 55 PX=9,62[kN/m2] 3 (EF) surfacique 3p (contour) P3(4.4, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(4.4, 2, 2.2) P4(0, 2, 2.2) P4(0, 2, 2.2) 4 (EF) surfacique 3p (contour) P3(4.4, 2, 2.2) P4(0, 2, 2.2) P4(0, 2, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P2(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 PZ1=-29,15[kN/m2] P1(0, 2, 2.2) P2(2.2, 2, 2.2) 15 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 0, 2.2)	1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=4,70[m] Direction=-Z
2 (EF) surfacique uniforme 61 PX=-9,62[kN/m2] 2 (EF) surfacique uniforme 60 PX=-9,62[kN/m2] 2 (EF) surfacique uniforme 60 PX=-9,62[kN/m2] 2 (EF) surfacique uniforme 55 PX=9,62[kN/m2] 3 (EF) surfacique 3p (contour) P3(4.4, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(4.4, 2, 2.2) P4(0, 2, 2.2) 4 (EF) surfacique 3p (contour) P3(4.4, 2, 2.2) P4(0, 2, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 2, 2.2) 5 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 0, 2.2)	1	(EF) pression hydrostatique	60	Gamma=-6,60[kG/m3] H=4,70[m]
2 (EF) surfacique uniforme 5 PX=9,62[kN/m2] 2 (EF) surfacique uniforme 60 PX=-9,62[kN/m2] 2 (EF) surfacique uniforme 55 PX=9,62[kN/m2] 3 (EF) surfacique 3p (contour) P3(4.4, 10.5, 2.2) P4(0, 10.5, 2.2) 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2] 8 (EF) surfacique 3p (contour) P3(4.4, 2, 2.2) P4(0, 2, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P2(1=-29,15[kN/m2] P1(0, 2, 2.2) P2(2.2, 2, 2.2) 15 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 0, 2.2)	1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=4,70[m] Direction=-Z
2 (EF) surfacique uniforme 60 PX=-9,62[kN/m2] 2 (EF) surfacique uniforme 55 PX=9,62[kN/m2] 3 (EF) surfacique 3p (contour) P3(4.4, 10.5, 2.2) P4(0, 10.5, 2.2) 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2] 8 (EF) surfacique 3p (contour) P3(4.4, 2, 2.2) P4(0, 2, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 15 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 0, 2.2)	2	(EF) surfacique uniforme 61	PX=-9	9,62[kN/m2]
2 (EF) surfacique uniforme 55 PX=9,62[kN/m2] 3 (EF) surfacique 3p (contour) P3(4.4, 10.5, 2.2) P4(0, 10.5, 2.2) 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2] 8 (EF) surfacique 3p (contour) P3(4.4, 2, 2.2) P4(0, 2, 2.2) 4 (EF) surfacique 3p (contour) P3(4.4, 2, 2.2) P4(0, 2, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 5 (EF) surfacique 3p (contour) P21=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 2, 2.2) 6 (EF) surfacique 3p (contour) P21=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 0, 2.2)	2	(EF) surfacique uniforme 5	PX=9,	,62[kN/m2]
3 (EF) surfacique 3p (contour)	2	(EF) surfacique uniforme 60	PX=-9	9,62[kN/m2]
P3(4.4, 10.5, 2.2) P4(0, 10.5, 2.2) 14 (EF) surfacique uniforme 4 PZ=-60,00[kN/m2] 8 (EF) surfacique 3p (contour) P3(4.4, 2, 2.2) P4(0, 2, 2.2) 4 (EF) surfacique 3p (contour) P21=-29,15[kN/m2] P1(0, 2, 2.2) P2(2.2, 2, 2.2) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 15 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 0, 2.2)	2	(EF) surfacique uniforme 55	PX=9,	,62[kN/m2]
8 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(4.4, 0, 2.2) P3(4.4, 2, 2.2) P4(0, 2, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 15 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 0, 2.2)	_		4	PZ1=-29,15[kN/m2] P1(0, 2, 2.2) P2(4.4, 2, 2.2)
P3(4.4, 2, 2.2) P4(0, 2, 2.2) 4 (EF) surfacique 3p (contour) P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 15 (EF) surfacique 3p (contour) 4 PZ1=-29,15[kN/m2] P1(0, 2, 2.2) P2(2.2, 2, 2.2) PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 0, 2.2)	14	(EF) surfacique uniforme 4	PZ=-	-60,00[kN/m2]
P3(2.2, 10.5, 2.2) P4(0, 10.5, 2.2) 15 (EF) surfacique 3p (contour) 4 PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 0, 2.2)		. , , , , , , , , , , , , , , , , , , ,	4	PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(4.4, 0, 2.2)
		. , , , , , , , , , , , , , , , , , , ,	4	PZ1=-29,15[kN/m2] P1(0, 2, 2.2) P2(2.2, 2, 2.2)
			4	PZ1=-3,02[kN/m2] P1(0, 0, 2.2) P2(2.2, 0, 2.2)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELS/16 (4+15+1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

1 - 81,85

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom	coordonnées Armatures adoptées	At .	Ar
-----	--------------------------------	------	----

x1 y1 x2 y2 $\square\square[mm]/[cm]$ [cm2/m] [cm2/m]

1/1-(1/3-) Ax Principal -0,00 -3,11 0,20 -1,89 12,0 / 16,0 0,00 < 6,79

1/2-(1/3-) Ax Principal -0.00 -3.11 1.20 0.00 12.0 / 16.0 0.24 < 6.79

1/3- Ax Principal -0,00 -3,11 2,20 0,00 10,0 / 20,0 0,31 < 3,93

1/4- Ay Perpendiculaire -0,00 -3,11 2,20 0,00 10,0 / 20,0 3,47 < 3,93

Ferraillage supérieur

Nom coordonnées Armatures adoptées At Ar

x1 y1 x2 y2 \square [mm] / [cm] [cm2/m] [cm2/m]

1/1+(1/3+) Ax Principal -0.00 -3.11 0.20 -1.89 12.0 / 16.0 6.74 < 6.79

1/2+(1/3+) Ax Principal -0.00 -3.11 1.20 0.00 12.0 / 16.0 6.69 < 6.79

1/3+ Ax Principal -0,00 -3,11 2,20 0,00 12,0 / 16,0 3,63 < 6,79

1/4+ Ay Perpendiculaire-0,00 -3,11 2,20 0,00 10,0/20,0 3,74 < 3,93

4. Quantitatif

Volume de Béton = 1,00 (m3)

Surface de Coffrage = 4,02 (m2)

Périmètre de la dalle = 9,26 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 85,51 (kG)

Densité = 85,16 (kG/m3)

Diamètre moyen = 10,0 (mm)

VI.3-PONTS CADRE ET PORTIQUES

Sol support

Contrainte admissible à l'ELS: 3 bars

Coefficient d'élasticité du sol : 15000 kN/m3

Données diverses

Largeur roulante des dalots Lr=8,5 7m;

Largeur chargeable des dalots Lch=8,5m;

Nombre de voies de circulation Nv= $E(\frac{8.5}{3})$ =2

Ouvrage à classer en pont de première classe

Coefficient bc=1,10 (pour la méthode Bc) et bt = 1 pour le système Bt.

Hypothèse sur les remblais

Pour le calcul des efforts et sollicitations dus aux remblais, nous

Considérons:

un poids spécifique de 2,00t/m3.

Angle de frottement interne :30°

Hauteur du remblai 1m

Poids volumique :20KN/m3

Cohésion négligée:

VI.3.1 EVALUATION DES CHARGES APPLIQUEES AUX OUVRAGES

VI.3.2 CHARGES D'EXPLOITATION

A-système a

Le système A est une charge uniforme qui modélise l'embouteillage sur toutes les voies de valeur :

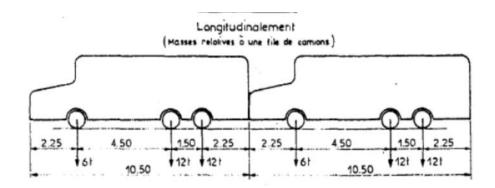
$$A = a_1 \times a_2 \times A(L)$$
 avec $A(L) = 2.3 + \frac{3.6}{L+1} e$ K /m2 L=longueur chargé

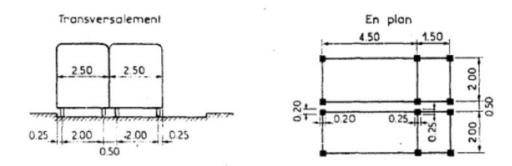
$$a_1=1$$
 Pont de première classe à deux voies $a_2=\frac{v_0}{\frac{L}{n}}$

$$l = l\iota$$
 cha éa = 8.5m

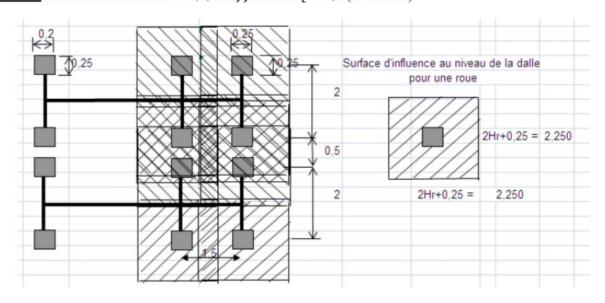
$$v_0 = l\iota$$
 $d'u$ $v = 3.5$ car ponts de 1^{ère} classe;

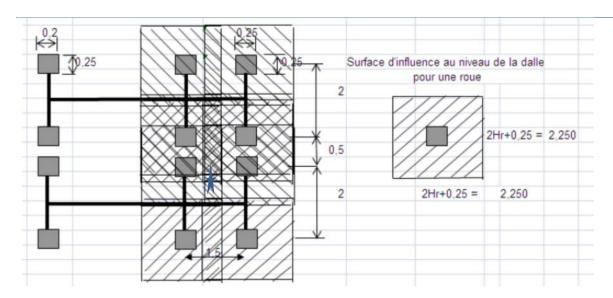
$$n = n\epsilon$$
 $d v = 2;$

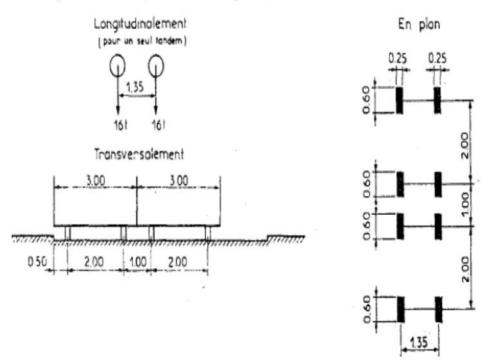

Ainsi
$$a_2 = 0.82$$
 e $A = 0.82 \times A(L)$

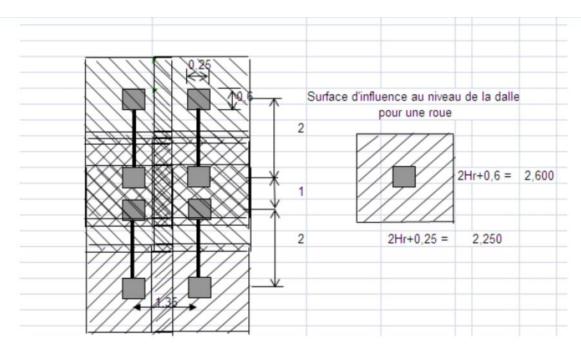

La surcharge A étant appliquée sur le remblai , sa surface d'impact au niveau supérieure du tablier est plus grande que la surface du tablier d'où ladite charge sera corrigé par la formule :1/(1+2x3tan30°)

On a


N °	DESIGNATIONS	OUVERTURE	A(L) (kN/m²)	a1xa2	A (kN/m²)	A corrigé suivant épaisseur remblai (kN/m²)
01	PONT CADRE	14	2,44	0,82	2,0	1,85
02	PONT PORTIQUE	12	2,45	0,82	2,01	1,83

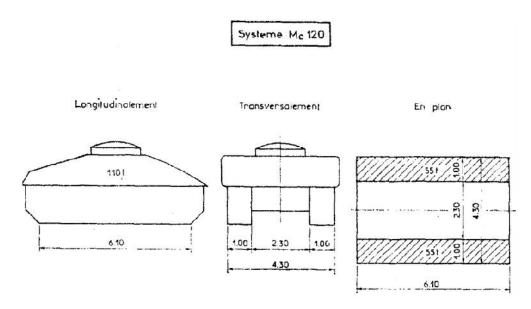

A-SYSTEME BC


<u>Données</u>: Entraxe des essieux = 1,5; Coefficient $b_c = 1, 1(Art. 5.22)$



B-SYSTEME BT

Notre pont étant de première classe, le coefficient $\boldsymbol{b_t} = 1$;



c-système BR

$$10t \quad F(t) = 10t$$

D-SYSTEME MC120

N °	DESIGNATIONS	OUVERTURE	Q(kN/m²)		
			Вс	Bt	Mc120
1	Pont cadre	14	17,70	49,59	27,80
2	Pont portique	12	17,70	49,59	27,80

E-surcharge sur remblai : MAX (20 ; Q DEFAVORABLE) EN KN/M²

F-surcharge sur trottoir:

Elle est de deux types :

CHARGE SURFACIQUE: 4,5 KN/M²

En prenant en compte sa diffusion à travers le remblai, on obtient Q1tr= $\frac{4,5x2}{2+1t_1-3}$ = 3,49 kN/m²

Charge roulante : 6t soit 60KN sur une surface d'impact de 0,25x0,25m²

III.2 CHARGES PERMANENTES

a-poussee des terres

Poids volumique: 20kN/m3

Coefficient de poussée Active : 0,33

b- poids propre des elements d'ouvrage

d- GUIDE ROUE:

Hauteur: 1 m;

Poids linéique : 0.2x25x1= 5 kN/m

e- remblai sur chaussee:

La hauteur de remblai :1m;

Poids volumique: 20kN/m3;

Angle de frottement interne : 30°

III.2-. COEFFICIENT DE MAJORATION DYNAMIQUE:

$$\delta = 1 + \frac{0.4}{1 + 0.2L} + \frac{0.6}{1 + 4\frac{G}{Q}}$$

Avec L=Max (Largeur roulable ; portée de la travée)

G=Poids total d'une section de couverture de longueur L et toute la largeur relative à cette couverture et aux éléments reposant sur elle.

Q=Poids total maximum des essieux du système (Bc ou Bt) qu'il est possible de placer sur la longueur L.

N °	DESIGNATIONS				
		Bc	Bt	Br	Mc120
1	PONT CADRE	1,21	1,18	1,15	1,21
2	PONT PORTIQUE	1,20	1,18	1,15	1,20

III.3-. CHOIX DU SYTEME LE PLUS DEFAVORABLE:

N °	DESIGNATIONS			Coefficient bc xQbcx bc	Coefficient bt xQbtx bt	QMC120X MC120	
		Вс	Bt	Mc120	Q _{bc} Pondéré	Q _{bt} Pondéré	Q _{Mc120} Pondéré
1	PONT CADRE	17,70	49,59	27,80	23,36	58,52	33,64
2	PONT PORTIQUE	17,70	49,59	27,80	23,36	58,52	33,36

Nous constatons que la surcharge routière surfacique la plus défavorable correspond au système Bt . C'est ce dernier qui sera utilisé dans le dimensionnement et même comme surcharge routière étant donné que toutes ces valeurs sont supérieures à $20~\rm kN/m^2$.

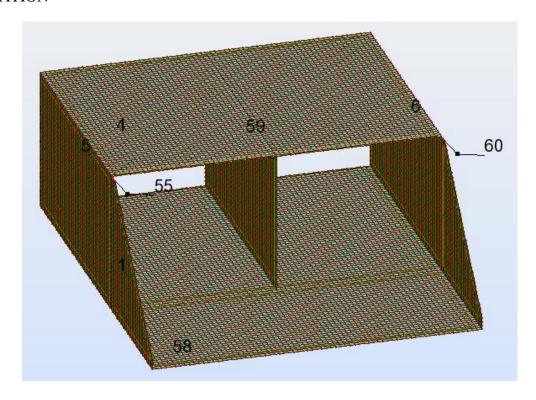
A-PONTS CADRES

Données :

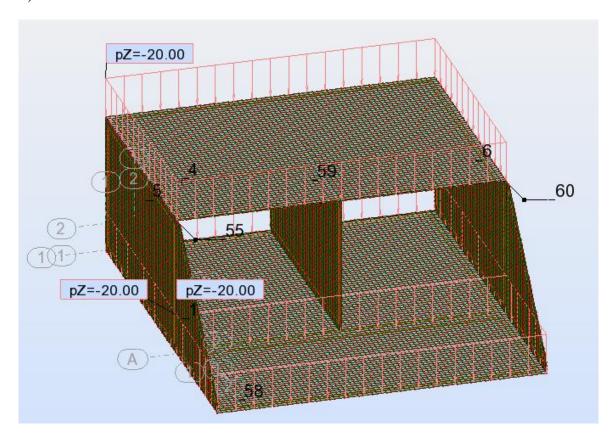
Hauteur intérieure entre la couche de roulement et face intérieure de la dalle = 4,50 m;

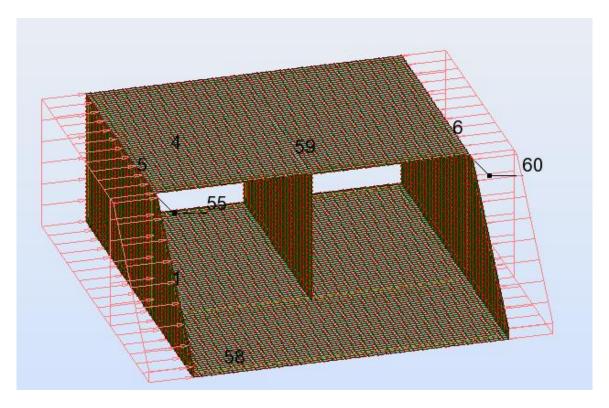
Hauteur totale intérieure = 6,00 m;

Largeur intérieure (01 cadre) = 7 m;

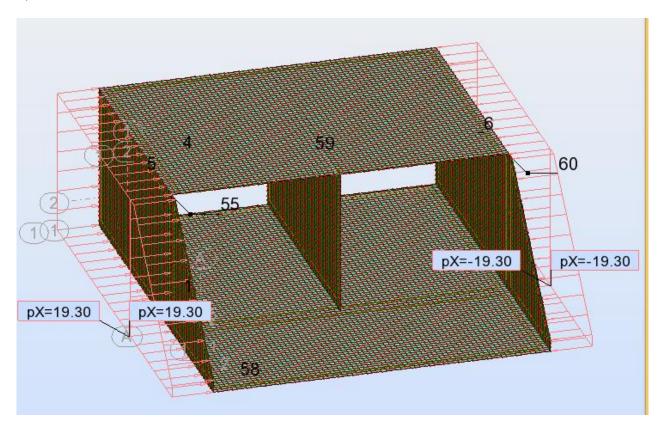

Hauteur de remblai maximum : 01 mètre ;

RESULTAT DU PRE-DIMENSIONNEMENT

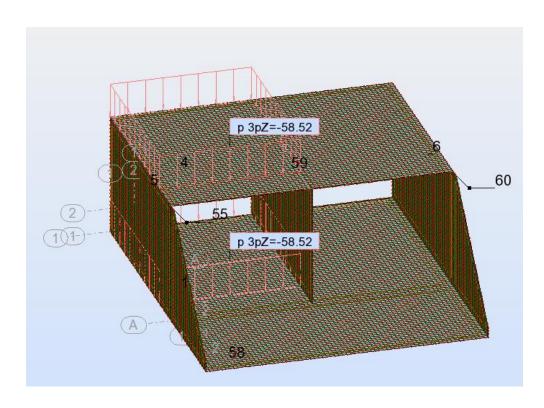

Les valeurs de pré dimensionnement sont données dans le tableau cidessous :

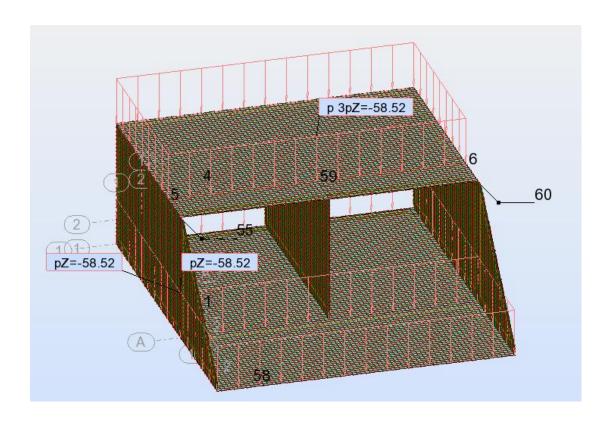

localisation		tronçon 1	PK 0+00
	unités	avant correction	après correction
ouverture(l)	m	7	7
hauteur intérieure	m	7	7
épaisseur traverse supérieure(Ets)	m	0,34	0,5
épaisseur piédroit(Ep)	m	0,36	0,5
épaisseur traverse inférieure(Eti)	m	0,36	0,5
fiche	m	2	2

MODELISATION

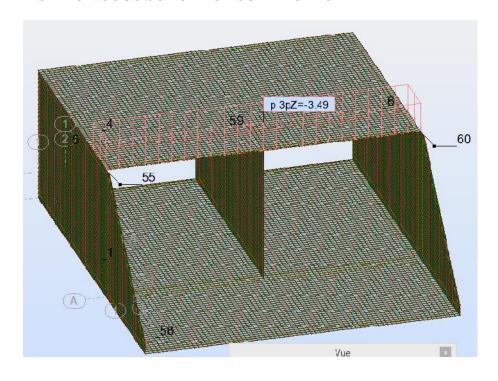


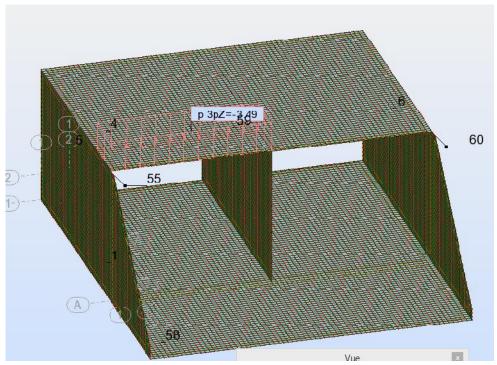
ii) MODELISATION SOUS REMBLAI ET POUSSEE DES TERRES

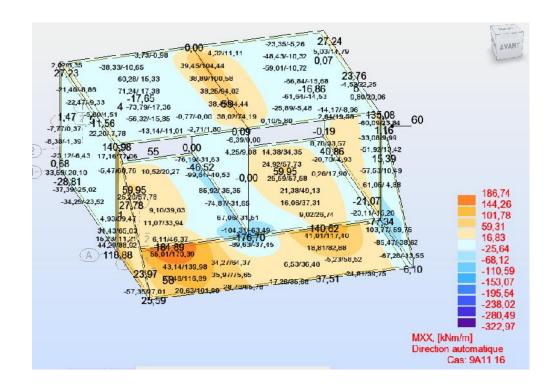




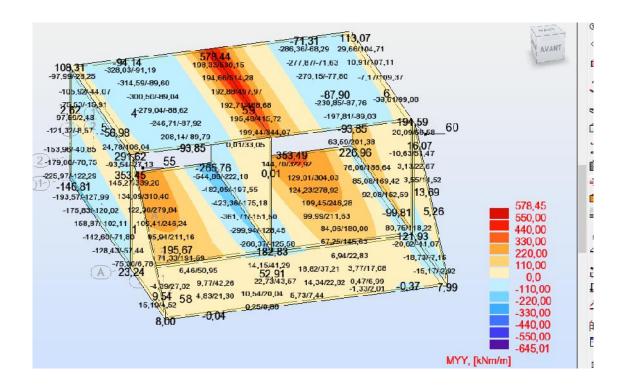
ii) MODELISATION SOUS SURCHARGE SUR REMBLAI




iii) MODELISATION SOUS SURCHAGE DU AU SYSTEME Bt



iV) MODELISATION SOUS SURCHAGE SUR TROTTOIR



V) CARTOGRAPHIE DES MOMENTS SENS XX

vi) CARTOGRAPHIE DES MOMENTS SENS YY

Vii CALCUL DU TABLIER

1. Dalle: Dalle4 - panneau n° 4

1.1. Ferraillage:

Type: PONT CADRE

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,2 (cm) d2 = 1,2 (cm)

supérieures d1 = 1,2 (cm) d2 = 1,2 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON30; résistance caractéristique = 30,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 0 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,60 (m)

Contour:

bord	rd début fin		longueur			
	x1	y1	x2	y2		(m)
1	0,00	-14,00	10,50	-14,00	10,50	
2	10,50	-14,00	10,50	0,00	14,00	221
						32 L

	3	10,50 0,00	0,00	0,00	10,50
--	---	------------	------	------	-------

4 0,00 0,00 0,00 -14,0014,00

Appui:

n°	Nom dime	dimensions coordonnées				
	(m)	x y				
0	linéaire	0,50 / 10,50 5,25	0,00 —			
0	linéaire	0,50 / 10,50 5,25	-14,00—			
0	linéaire	0,50 / 10,50 5,25	-7,00 —			

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

Ferraillage théorique modifié (cm2/m):

Ferraillage théorique primaire (cm2/m):

Coordonnées (m):

1.5.2. Moments maximaux + ferraillage pour la flexion

Ax(+) Ax(-) Ay(+) Ay(-)

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	8,49/2,57	3,38/10,26	6,56/2,57	3,38/10,26
Ax(-) (cm2/m)	3,38/7,70	7,40/7,70	3,38/7,70	3,48/7,70
Ay(+) (cm2/m)	47,48/62,83	3,31/50,27	48,53/62,83	3,31/50,27
Ay(-) (cm2/m)	3,31/33,85	22,75/28,87	3,31/33,85	27,79/28,87

ELS

Mxx (kN*m/m)	112,17	-68,6587,38 -30,45			
Myy (kN*m/m)	564,09	-246,91	578,44	-328,44	
Mxy (kN*m/m)	18,80 29,19 23,37 20,59				

ELU

Mxx (kN*m/m)	112,17	-68,6587,3				
Myy (kN*m/m)	564,09	-246,91	578,44	-328,44		
Mxy (kN*m/m)	m/m) 18,80 29,19 23,37 20,59					

Coordonnées (m) 2,18;-7,00 6,20;-10,20 0,79;-7,00 1,00;-11,00 Coordonnées* (m) 7,00;8,32;6,00 3,80;4,30;6,00 7,00;9,71;6,00 3,00;9,50;6,00

^{* -} Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.3 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 3.8 \text{ (cm)} > fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 55 58A60		PZ Moins		
1	(EF) pression hydrostatique		60	Gamma=6,60[kG/m3] H=6,20[m]	Direction=-Z
1	(EF) pression hydrostatique		6	Gamma=-6,60[kG/m3] H=7,00[m]	Direction=-Z
1	(EF) pression hydrostatique		5	Gamma=6,60[kG/m3] H=7,00[m]	Direction=-Z
1	(EF) pression hydrostatique			Gamma=-6,60[kG/m3] H=7,00[m]	Direction=-Z
1	(EF) pression hydrostatique		55	Gamma=-6,60[kG/m3] H=7,00[m]	Direction=-Z
2	(EF) surfacique uniforme	60	PX=-1	9,30[kN/m2]	
2	(EF) surfacique uniforme	6	PX=-1	9,30[kN/m2]	
2	(EF) surfacique uniforme	5	PX=19,30[kN/m2]		
2	(EF) surfacique uniforme	55	PX=19,30[kN/m2]		
3 (EF) surfacique 3p (contour) P3(14, 10.5, 6) P4(0, 10.5, 6)		4	PZ1=-58,52[kN/m2] P1(0, 2, 6) P2(14, 2, 6)		
3	(EF) surfacique uniforme	1 58	PZ=-	58,52[kN/m2]	
14	(EF) surfacique uniforme	4	PZ=-	20,00[kN/m2]	
14	(EF) surfacique uniforme	1 58	PZ=-	20,00[kN/m2]	
8 P3(14	(EF) surfacique 3p (contour) 4, 2, 6) P4(0, 2, 6)		4	PZ1=-3,49[kN/m2] P1(0, 0, 6) P2(14, 0, 6)	
4 10.5,	(EF) surfacique 3p (contour) 5, 6) P4(0, 10.5, 6)		4	PZ1=-58,52[kN/m2] P1(0, 2, 6) P2(7, 2, 6) P3(7,	

4 (EF) surfacique 3p (contour) 1 58 PZ1=-58,52[kN/m2] P1(0, 2, 0) P2(7, 2, 0) P3(7, 10.5, 0) P4(0, 10.5, 0)

15 (EF) surfacique 3p (contour) 4 PZ1=-3,49[kN/m2] P1(0, 0, 6) P2(7, 0, 6) P3(7, 2, 6) P4(0, 2, 6)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELS/16 (4+15+1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 11208,67
- 2 11589,02
- 3 11665,81
- 4 12417,06
- 5 15115,59
- 6 16942,91
- 7 17204,44
- 8 19031,76
- 9 23209,47

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées Armatures adoptées At Ar

x1 y1 x2 y2 \[\phi \[\left[mm \] / [cm] \] [cm2/m] [cm2/m]

1/1- Ax Principal 0,00 -14,0010,50 0,00 14,0 / 20,0 7,40 < 7,70

1/2- Ay Perpendiculaire 0,00 -14,0010,50 0,00 25,0 / 17,0 27,79 < 28,87

Ferraillage supérieur

 Nom coordonnées
 Armatures adoptées
 At Ar

 x1
 y1
 x2
 y2
 φ [mm] / [cm]
 [cm2/m]
 [cm2/m]

 1/1+ Ax Principal
 0,00
 -14,0010,50 0,00 14,0 / 15,0 8,49 < 10,26</td>
 10,26

 1/2+ Ay Perpendiculaire
 0,00
 -14,0010,50 0,00 32,0 / 16,0 48,53 < 50,27</td>

4. Quantitatif

Volume de Béton = 88,20 (m3)

Surface de Coffrage = 147,00 (m2)

Périmètre de la dalle = 49,00 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 11813,51 (kG)

Densité = 133,94 (kG/m3)

Diamètre moyen = 22,0 (mm)

Vii CALCUL DU RADIER

1. Dalle: Dalle1 - panneau n° 1

1.1. Ferraillage:

Type: PONT CADRE

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,2 (cm) d2 = 1,2 (cm)

supérieures d1 = 1,2 (cm) d2 = 1,2 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON30; résistance caractéristique = 30,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 0 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,60 (m)

Contour:

bord	début fin		longu			
	x1	y1	x2	y2		(m)
1	0,00	14,00	10,50	14,00	10,50	
2	10,50	14,00	10,50	0,00	14,00	
3	10,50	0,00	0,00	0,00	10,50	
4	0,00	0,00	0,00	14,00	14,00	

Appui:

n°	Nom dimensions coordonnées							
	(m)	x y	/					
0	linéaire	0,50 / 1	0,50 5,25	0,00 —				
0	linéaire	0,50 / 1	0,50 5,25	14,00 —				
0	linéaire	0,50 / 1	0,50 5,25	7,00 —				

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

5,14 18,48 28,87 66,14

Ferraillage théorique modifié (cm2/m):

5,07 17,18 28,65 54,07

Ferraillage théorique primaire (cm2/m):

5,07 17,18 28,65 54,07

Coordonnées (m):

7,00;2,00 0,20;7,00 10,40;3,00 10,10;7,00

1.5.2. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	5,07/5,14	3,38/5,14	3,38/5,14	3,38/5,14
Ax(-) (cm2/m)	3,38/18,48	17,18/18,48	3,38/18,48	6,40/18,48
Ay(+) (cm2/m)	22,42/28,87	3,31/33,85	28,65/28,87	3,31/196,35
Ay(-) (cm2/m)	3,31/54,64	27,29/66,14	3,31/54,64	54,07/66,14

ELS					
Mxx (kN*m/m)	51,13 -194,1	9	2,43	-66,99	
Myy (kN*m/m)	252,52	-335,1	7	353,49	-645,01
Mxy (kN*m/m)	-18,3639,58	8,56	4,52		
ELU					
Mxx (kN*m/m)	51,13 -194,1	9	2,43	-66,99	
Myy (kN*m/m)	252,52	-335,1	7	353,49	-645,01
Mxy (kN*m/m)	-18,3639,58	8,56	4,52		
Coordonnées (m)	7,00;2,00	0,20;7	,00	10,40;3,00	10,10;7,00
Coordonnées* (m) 7,00;10,10;0,00	12,00;7,00;0	,00	7,00;0),20;0,00	11,00;10,40;0,00

^{* -} Coordonnées dans le repère global de la structure

1.5.4. Flèche

$$|f(+)| = 0.3 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$$

$$|f(-)| = 3.6 \text{ (cm)} > fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 55 58A60	PZ N	<i>M</i> oins	
1	(EF) pression hydrostatique	60	Gamma=6,60[kG/m3] H=6,20[m]	Direction=-Z
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=7,00[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=7,00[m]	Direction=-Z
1	(EF) pression hydrostatique		Gamma=-6,60[kG/m3] H=7,00[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=7,00[m]	Direction=-Z
2	(EF) surfacique uniforme 60	PX=-1	19,30[kN/m2]	

2 (EF) surfacique uniforme 6 PX=-19,30[kN/m2] 2 (EF) surfacique uniforme 5 PX=19,30[kN/m2] 2 (EF) surfacique uniforme 55 PX=19,30[kN/m2] 3 (EF) surfacique 3p (contour) 4 PZ1=-58,52[kN/m2] P1(0, 2, 6) P2(7) P3(14, 10.5, 6) P4(0, 10.5, 6)	
2 (EF) surfacique uniforme 55 PX=19,30[kN/m2] 3 (EF) surfacique 3p (contour) 4 PZ1=-58,52[kN/m2] P1(0, 2, 6) P2(2)	
3 (EF) surfacique 3p (contour) 4 PZ1=-58,52[kN/m2] P1(0, 2, 6) P2(
	14, 2, 6)
3 (EF) surfacique uniforme 1 58 PZ=-58,52[kN/m2]	
14 (EF) surfacique uniforme 4 PZ=-20,00[kN/m2]	
14 (EF) surfacique uniforme 1 58 PZ=-20,00[kN/m2]	
8 (EF) surfacique 3p (contour) 4 PZ1=-3,49[kN/m2] P1(0, 0, 6) P2(14 P3(14, 2, 6) P4(0, 2, 6)	4, 0, 6)
4 (EF) surfacique 3p (contour) 4 PZ1=-58,52[kN/m2] P1(0, 2, 6) P2(7, 10.5, 6) P4(0, 10.5, 6)	7, 2, 6) P3(7,
4 (EF) surfacique 3p (contour) 1 58 PZ1=-58,52[kN/m2] P1(0, 2, 0) P2(7, 10.5, 0) P4(0, 10.5, 0)	7, 2, 0) P3(7,
15 (EF) surfacique 3p (contour) 4 PZ1=-3,49[kN/m2] P1(0, 0, 6) P2(7, 2, 6) P4(0, 2, 6)	, 0, 6) P3(7,

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELS/16 (4+15+1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 12366,73
- 2 15693,10
- 3 16642,39
- 4 17709,00
- 5 19536,32
- 6 19536,32
- 7 23714,02

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées			Armatures adoptées		At	Ar						
	x1	y1	x2	y2	φ [mm	n] / [cm]	[cm2/	m]	[cm2/ı	m]	
1/1-	Ax Prin	cipal	0,00	0,00	10,50	14,00	20,0/	17,0	17,18	<	18,48	
1/2-	Av Peri	pendici	ulaire	0.00	0.00	10.50	14.00	40.0 /	23.0	54.07	<	54.64

Ferraillage supérieur

Nom coordonnées		S	Armatures adoptées			At Ar						
	x1	y1	x2	y2	φ [mm	n] / [cm	n]	[cm2/	m]	[cm2/	m]	
1/1+	Ax Prir	ncipal	0,00	0,00	10,50	14,00	12,0/	22,0	5,07	<	5,14	
1/2+	Av Per	pendic	ulaire	0.00	0.00	10.50	14.00	25.0 /	17.0	28.65	<	28.87

4. Quantitatif

Volume de Béton = 88,20 (m3)

Surface de Coffrage = 147,00 (m2)

Périmètre de la dalle = 49,00 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 13305,75 (kG)

Densité = 150,86 (kG/m3)

Diamètre moyen = 24,3 (mm)

Viii CALCUL DU PIEDROIT

1. Dalle: Dalle6 - panneau n° 6

1.1. Ferraillage:

Type: PONT CADRE

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,2 (cm) d2 = 1,2 (cm)

supérieures d1 = 1,2 (cm) d2 = 1,2 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON30; résistance caractéristique = 30,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 3,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 0 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,50 (m)

Contour:

bord	début fin		longu		
	x1	y1	x2	y2	(m)
1	0,00	-6,00	10,50	-6,00	10,50
2	10,50	-6,00	10,50	0,00	6,00
3	10,50	0,00	0,00	0,00	10,50
4	0,00	0,00	0,00	-6,00	6,00

Appui:

n° Nom dimensions coordonnées bord

(m) x y

0 linéaire 0,60 / 10,50 5,25 -6,00 —

0 linéaire 0,60 / 10,50 5,25 0,00 —

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

13,09 19,63 24,54 19,63

Ferraillage théorique modifié (cm2/m):

12,09 17,20 23,44 16,22

Ferraillage théorique primaire (cm2/m):

12,09 17,20 23,44 16,22

Coordonnées (m):

0,00;0,00 0,00;0,00 10,10;-6,00 0,00;0,00

1.5.2. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	12,09/13,09	12,09/13,09	3,68/13,09	12,09/13,09
Ax(-) (cm2/m)	17,20/19,63	17,20/19,63	2,78/19,63	17,20/19,63
Ay(+) (cm2/m)	12,28/24,54	12,28/24,54	23,44/24,54	12,28/24,54
Ay(-) (cm2/m)	16,22/19,63	16,22/19,63	4,17/19,63	16,22/19,63

^{* -} présence du chapiteau

ELS

Mxy (kN*m/m) -20,81-20,81-14,21-20,81

ELU

Mxy (kN*m/m) -20,81-20,81-14,21-20,81

Coordonnées (m) 0,00;0,00 0,00;0,00 10,10;-6,00 0,00;0,00

Coordonnées* (m) 14,00;0,00;6,00 14,00;0,00;6,00 14,00;10,10;0,00 14,00;0,00;6,00

1.5.4. Flèche

$$|f(+)| = 0.4$$
 (cm) <= fdop(+) = 3.0 (cm)

$$|f(-)| = 0.9 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$$

2. Chargements:

Cas Type Liste Valeur

1	poids propre 1 4A6 55 58A60	PZ I	Moins	
1	(EF) pression hydrostatique	60	Gamma=6,60[kG/m3] H=6,20[m]	Direction=-Z
1	(EF) pression hydrostatique	6	Gamma=-6,60[kG/m3] H=7,00[m]	Direction=-Z
1	(EF) pression hydrostatique	5	Gamma=6,60[kG/m3] H=7,00[m]	Direction=-Z
1	(EF) pression hydrostatique		Gamma=-6,60[kG/m3] H=7,00[m]	Direction=-Z
1	(EF) pression hydrostatique	55	Gamma=-6,60[kG/m3] H=7,00[m]	Direction=-Z

^{* -} Coordonnées dans le repère global de la structure

- 2 (EF) surfacique uniforme 60 PX=-19,30[kN/m2]
- 2 (EF) surfacique uniforme 6 PX=-19,30[kN/m2]
- 2 (EF) surfacique uniforme 5 PX=19,30[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=19,30[kN/m2]
- 3 (EF) surfacique 3p (contour) 4 PZ1=-58,52[kN/m2] P1(0, 2, 6) P2(14, 2, 6) P3(14, 10.5, 6) P4(0, 10.5, 6)
- 3 (EF) surfacique uniforme 1 58 PZ=-58,52[kN/m2]
- 14 (EF) surfacique uniforme 4 PZ=-20,00[kN/m2]
- 14 (EF) surfacique uniforme 1 58 PZ=-20,00[kN/m2]
- 8 (EF) surfacique 3p (contour) 4 PZ1=-3,49[kN/m2] P1(0, 0, 6) P2(14, 0, 6) P3(14, 2, 6) P4(0, 2, 6)
- 4 (EF) surfacique 3p (contour) 4 PZ1=-58,52[kN/m2] P1(0, 2, 6) P2(7, 2, 6) P3(7, 10.5, 6) P4(0, 10.5, 6)
- 4 (EF) surfacique 3p (contour) 1 58 PZ1=-58,52[kN/m2] P1(0, 2, 0) P2(7, 2, 0) P3(7, 10.5, 0) P4(0, 10.5, 0)
- 15 (EF) surfacique 3p (contour) 4 PZ1=-3,49[kN/m2] P1(0, 0, 6) P2(7, 0, 6) P3(7, 2, 6) P4(0, 2, 6)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELS/16 (4+15+1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 3804,57
- 2 3804,57
- 3 4128,36
- 4 4128,36
- 5 4801,98
- 6 5125,77
- 7 5125,77
- 8 5125,77
- 9 6366,03
- 10 9946,91

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées			Arma	Armatures adoptées			At	Ar				
	x1	y 1	x2	y2	φ [mm] / [cm	n]	[cm2/	m]	[cm2/i	m]	
1/1- /	Ax Prir	ncipal	0,00	-6,00	10,50	0,00	20,0 /	16,0	17,20	<	19,63	
1/2- /	Ay Per	pendicu	ulaire	0,00	-6,00	10,50	0,00	20,0/	16,0	16,22	<	19,63
Ferra	Ferraillage supérieur											

Nom	coord	ionnee	S	Arma	tures a	dopte	es	At	Ar			
	x1	y1	x2	y2	φ [mm] / [cm]	[cm2/	m]	[cm2/ı	m]	
1/1+	Ax Prir	ncipal	0,00	-6,00	10,50	0,00	20,0/	24,0	12,09	<	13,09	
1/2+	Av Per	pendic	ulaire	0.00	-6.00	10.50	0.00	25.0 /	20.0	23.44	<	24.54

4. Quantitatif

Volume de Béton = 31,50 (m3)

Surface de Coffrage = 63,00 (m2)

Périmètre de la dalle = 33,00 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 3648,75 (kG)

Densité = 115,83 (kG/m3)

Diamètre moyen = 21,2 (mm)

iX CALCUL DU MUR EN AILE

Mur de sout nement : AILE

1. Param tres de calcul:

MATERIAU:

• BETON: classe C25/30, fc28 = 25,00 (MN/m2), poids volumique = 25,00 (kN/m3)

• ACIER: classe HA 500, fe = 500,00 (MN/m2)

OPTIONS:

Calculs suivant la norme: béton: BAEL 91 mod. 99

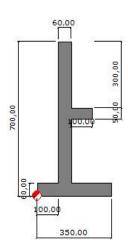
sols: **DTU 13.12**

Enrobage: c1 = 30,0 (mm), c2 = 50,0 (mm)

- Agressivité du milieu: peu agressif
- Fissuration: préjudiciable
- Dimensionnement du mur en fonction de:
 - Résistance
 - Glissement g = 1,500
 - Renversement g = 1,500
- Vérification du mur en fonction de:
 - Tassement moyen:

 $S_{dop} = 10,00 \text{ (cm)}$

- Différence de tassements:

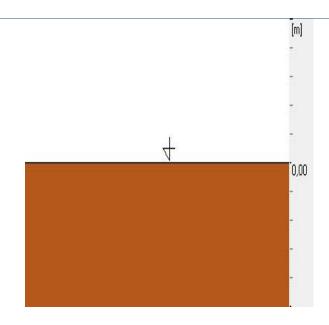

 $DS_{dop} = 5,00 \text{ (cm)}$

- Coefficients de réduction pour:
 - · Cohésion du sol 100,000 %
 - Adhésion semelle-sol 0,000 %

· - Butée du voile 50,000 %	
- Butée de la b che	100,000 %
Angle de frottement sol-voile:	
· - Butée pour les sols incohérents	0 × φ
· - Poussée pour les sols cohérents	2/3 × ∳
- Butée pour les sols cohérents	0×ф
- Poussée pour les sols incohérents	2/3×φ

.

2. Géométrie:



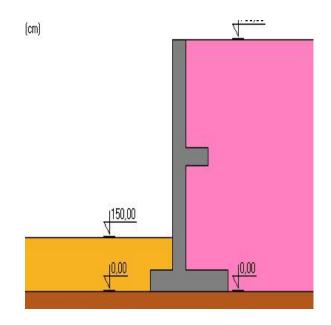
3. <u>Sol:</u>

- Définition des param tres géotechniques suivant la méthode: A
- **Talus** Profondeur du sol aval Ho = 700,00 (cm)
- Stratification primaire:

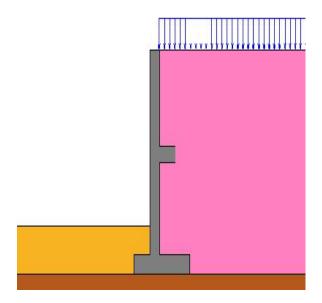
Param tres:

N°	Nom du sol	Niveau [cm]	Epaisseur [cm]	Cohésion [kN/m2]	Angle de frottement [Deg]	Densité [kN/m3]
1.	Argiles et limons fermes	0,00	-	20,00	30,00	20,00

• Sols en amont:


Param tres:

N	1°	Nom du sol	Niveau [cm]	Epaisseur [cm]	Cohésion [kN/m2]	Angle de frottement [Deg]	Densité [kN/m3]
	1	Sables et graves compacts	700,00	700,00	0,00	35,00	20,00


• Sols en aval:

Param tres:

N°	Nom du sol	Niveau [cm]	Epaisseur [cm]	Cohésion [kN/m2]	Angle de frottement [Deg]	Densité [kN/m3]
1	Sables et graves compacts	150,00	150,00	0,00	35,00	20,00

4. Charges

Liste de charges

1 uniforme a1 d'exploitation x = 0.00 (m) P = 20.00 (kN/m2)

5. Résultats de calculs géotechniques

POUSSEES

Poussée et butée des terres : conforme aux déplacements du mur Coefficients de poussées et butées limites et équilibres pour les sols:

Angle d'inclinaison moyen du talus ϵ = 0,00 (Deg) Angle d'inclinaison du voile β = 0,00 (Deg)

$$K_{a} = \frac{\cos^{2} \cdot (\mathsf{S} - \mathsf{W})}{\cos^{2} \mathsf{S} \cdot \cos(\mathsf{S} + \mathsf{U}) \cdot \left(1 + \sqrt{\frac{\sin(\mathsf{W} + \mathsf{U}) \cdot \sin(\mathsf{W} - \mathsf{V})}{\cos(\mathsf{S} + \mathsf{U}) \cdot \cos(\mathsf{S} - \mathsf{V})}}\right)^{2}}$$

$$K_{p} = \frac{\cos^{2} \cdot (\mathsf{S} + \mathsf{W})}{\cos^{2} \mathsf{S} \cdot \cos(\mathsf{S} + \mathsf{U}) \cdot \left(1 - \sqrt{\frac{\sin(\mathsf{W} + \mathsf{U}) \cdot \sin(\mathsf{W} + \mathsf{V})}{\cos(\mathsf{S} + \mathsf{U}) \cdot \cos(\mathsf{S} - \mathsf{V})}}\right)^{2}}$$

$$\cos^{2} S \cdot \cos(S + U) \cdot \left(1 - \sqrt{\frac{\sin(W + U) \cdot \sin(W + V)}{\cos(S + U) \cdot \cos(S - V)}}\right)$$

$$K_{o} = \frac{\dagger_{x}}{\dagger_{z}} = \frac{\epsilon}{1 - \epsilon}$$

$$K_a \le K_o \le K_p$$

J. J. P

Sols en amont:

N°	Nom du sol	Niveau [cm]		Ka	Ко	Кр
			[Deg]			

1.	Sables et graves	700,00	35,00	0,244	0,429	3,690
	compacts					

• Déplacements limites totaux

butée 0,116

poussée 0,012

Sols en aval:

•	Nom du sol	Niveau [cm]	Angle de frottement	Ka	Ко	Кр
N°			[Deg]			
1.		150,00		0,244	0,429	3,690

• Déplacements limites totaux

butée 0,129

poussée 0,013

RESISTANCE

• Type de sol sous la semelle: uniforme

• Combinaison dimensionnante: 1,000*PM + 1,000*P'a + 1,000*Pa + 1,000*PT + 1,000*PT + 1,000*a1

• Charge dimensionnante réduite:

N=-510,88 (kN/m) My=-146,31 (kN*m) Fx=-85,73 (kN/m)

Coefficient de sécurité: 1,496 > 1,000

TASSEMENT

• Type de sol sous la fondation: uniforme

Combinaison dimensionnante: 1,000*PM + 1,000*P'a + 1,000*Pa + 1,000*PT + 1,000*PT + 1,000*a1

• Charge dimensionnante réduite:

N=-510,88 (kN/m) My=-146,31 (kN*m) Fx=-85,73 (kN/m)

• Charge caractéristique unitaire due aux charges totales: q = 0,15 (MN/m2)

Epaisseur du sol en tassement active: z = 525,00 (cm)

• Contrainte au niveau z:

- additionnelle: szd = 0,01 (MN/m2)

- due au poids du sol: szg = 0,11 (MN/m2)

• Tassement: S = 5,06 (cm) < Sdop = 10,00 (cm)

RENVERSEMENT

• Combinaison dimensionnante: 1,000*PM + 1,000*P'a + 1,553*Pa + 1,000*P'T + 0,900*PT + 1,500*a1

• Charge dimensionnante réduite:

N=-539,13 (kN/m) My=-27,41 (kN*m) Fx=-154,54 (kN/m)

• Moment de renversement: Mo= 494,66 (kN*m)

Moment emp_chant le renversement de la fondation: M_{uf} = 1130,21 (kN*m)

• Coefficient de sécurité: 2,285 > 1,500

GLISSEMENT

Combinaison dimensionnante: 1,000*PM + 1,000*P'a + 1,000*Pa + 1,000*PT + 1,000*PT + 1,000*a1

• Charge dimensionnante réduite:

N=-510,88 (kN/m) My=-146,31 (kN*m) Fx=-85,73 (kN/m)

• Dimensions équivalentes de la semelle: A = 350,00 (cm)

Coefficient de frottement:

- du sol (position du sol): f = 0.381

- Coefficient de réduction de la cohésion du sol = 100,000 %
- Cohésion: C = 20,00 (kN/m2)
- Valeur de la force de glissement: Q_{tr} = 85,73 (kN/m)
- Valeur de la force emp chant le glissement du mur:
 - $Q_{tf} = N * f + C * A$
 - au niveau du sol: $Q_{tf} = 264,67 \text{ (kN/m)}$
- Coefficient de sécurité: 3,087 > 1,500

ANGLES DE ROTATION

- Type de sol sous la fondation: uniforme
- Combinaison dimensionnante: 1,000*PM + 1,000*P'a + 1,000*Pa + 1,000*PT + 1,000*PT + 1,000*a1
- Charge dimensionnante réduite:

N=-510,88 (kN/m) My=-146,31 (kN*m) Fx=-85,73 (kN/m)

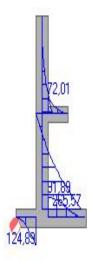
Contraintes unitaires maximales caractéristiques dues aux charges totales:

qmax = 0.21 (MN/m2)

• Contraintes unitaires mimimales caractéristiques dues aux charges totales:

qmin = 0.08 (MN/m2)

- Angle de rotation: ro = 0,79 (Deg)
- Coordonnées du point de rotation du voile:

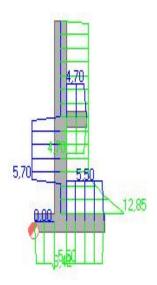

X = 561,25 (cm)

Z = 0.00 (cm)

• Coefficient de sécurité: 1,032 < 1,500

6. Résultats de calcul béton armé

Moments

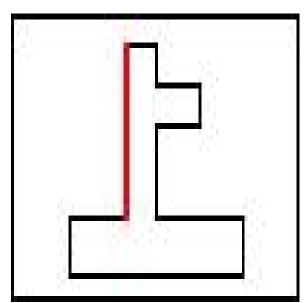


(kN*m)

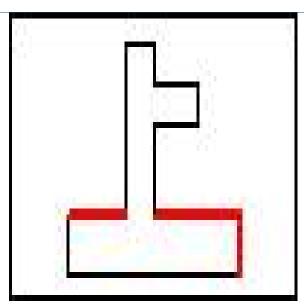
Elé ment	Moments	Valeur [kN*m]	Position [cm]	Combinaison
Voile	maximum	298,72	60,00	1,000*PM + 1,000*P'a + 1,553*Pa + 1,000*P'T + 0,900*PT + 1,500*a1
Voile	minimum	-63,32	375,00	1,350*PM + 1,000*P'a + 0,850*Pa + 1,000*P'T + 1,485*PT

Semelle	maximum	129,69	100,00	1,350*PM + 1,000*P'a + 1,553*Pa + 1,000*P'T + 0,900*PT + 1,500*a1
Semelle	minimum	-126,63	160,00	1,000*PM + 1,000*P'a + 1,553*Pa + 1,350*P'T + 0,900*PT + 1,500*a1

• Ferraillage


(cm2/m)

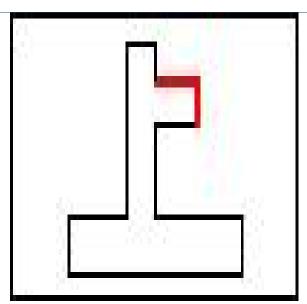
Position	Section d'acier théorique [cm2/m]	Barres		Espacement [cm]	Surface réelle [cm2/m]
voile gauche	5,70	12,0	tous les	19,00	5,95
voile gauche (h/3)	5,70	12,0	tous les	19,00	5,95
voile droite	12,85	16,0	tous les	15,00	13,40
voile droite (h/3)	5,70	12,0	tous les	19,00	5,95
voile droite (h/2)	5,70	12,0	tous les	19,00	5,95
tablette 1 (+)	4,70	12,0	tous les	24,00	4,71
tablette 1 (-)	4,70	12,0	tous les	24,00	4,71
semelle gauche (-)	6,42	12,0	tous les	17,00	6,65
semelle droite (+)	5,50	12,0	tous les	20,00	5,65
semelle droite (-)	5,50	12,0	tous les	20,00	5,65
semelle gauche (+)	0,00	10,0	tous les	14,00	5,61


- Type:Barres:
- Espacement:
- nombre:
- longueur:

- 20,0 24,00 (cm)
- 811,12 (cm)


- Type:Barres:
- Espacement:
- nombre:
- longueur:

- 12,0
- 19,00 (cm)
- 5 731,19 (cm)


- Type:Barres:
- Espacement:
- nombre:
- longueur:

- 10,0 14,00 (cm)
- 422,56 (cm)

- Type:Barres:
- Espacement:
- nombre:
- longueur:

- 10,0
- 12,00 (cm)
- 422,56 (cm)

- Type:Barres:
- Espacement:
- nombre:
- longueur:

- 12,0 24,00 (cm) 4
- 266,38 (cm)

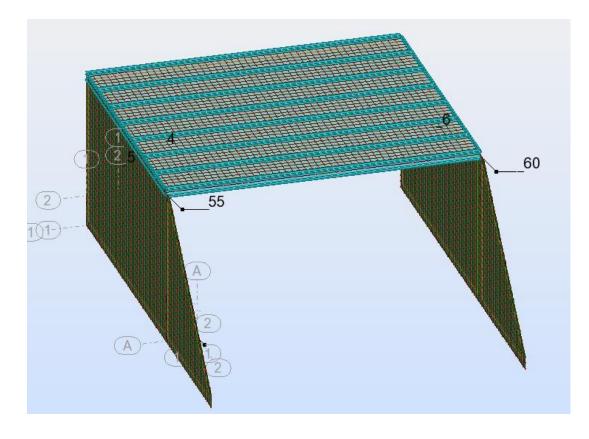
B-PONT PORTIQUE

Pont portique tronçon 4

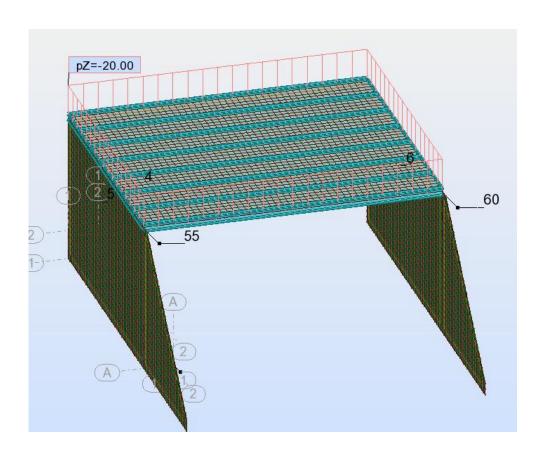
Données :

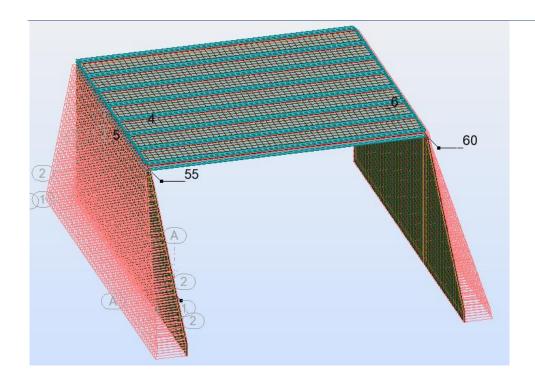
Hauteur totale intérieure = 6,00 m;

Largeur intérieure (01 cadre) = 12 m;

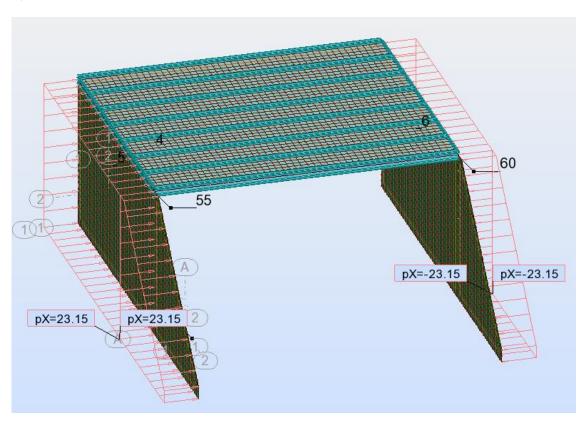

Hauteur de remblai maximum : 01 mètre ;

Résultat du pré-dimensionnement

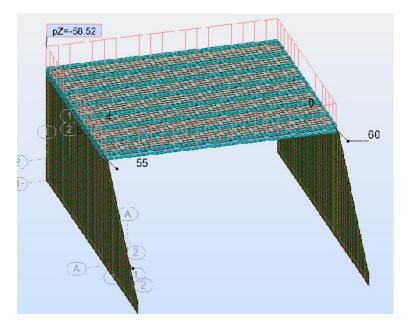

localisation		tronçon 4	PK
	unités	avant correction	après correction
ouverture(l) en m	m	12	12
hauteur intérieure en m	m	6	6
épaisseur traverse(Et)	m	0,4	0,5

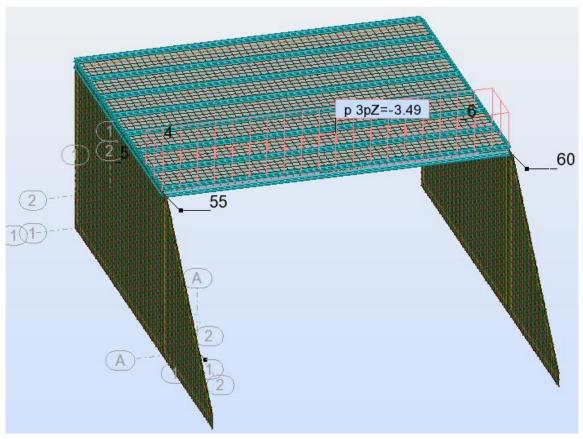

épaisseur piédroit(Ep)	m	0,4	0,5
épaisseur de la semelle(Es)	m	0,6	0,6
fiche	m	2	
largeur de la semelle(Ls)	m	1,8	1,8
excentricité(es)	m	-0,2	-0,2

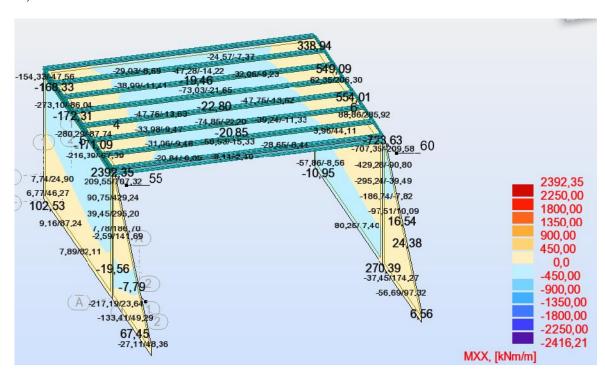
MODELISATION

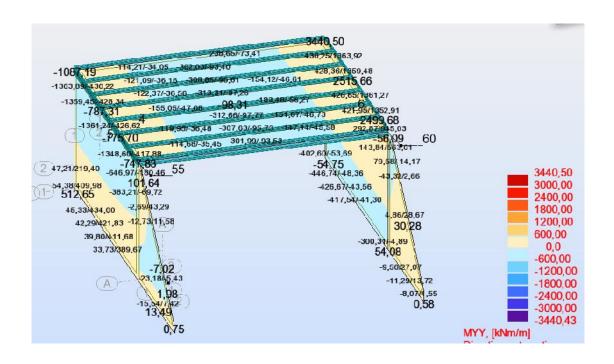


ii) MODELISATION SOUS REMBLAI ET POUSSEE DES TERRES




ii) MODELISATION SOUS SURCHARGE SUR REMBLAI


iii) MODELISATION SOUS SURCHAGE DU AU SYSTEME Bt


iV) MODELISATION SOUS SURCHAGE SUR TROTTOIR

V) CARTOGRAPHIE DES MOMENTS SENS XX

vi) CARTOGRAPHIE DES MOMENTS SENS YY

Vii CALCUL DU TABLIER

1. Dalle: Dalle4 - panneau n° 4

1.1. Ferraillage:

Type: tablier portique

Direction armatures principales : 0°

Classe armatures principales : HA 500; résistance caractéristique = 500,00 MPa

Diamètres des barres inférieures d1 = 1,4 (cm) d2 = 1,4 (cm)

supérieures d1 = 1,4 (cm) d2 = 1,4 (cm)

Enrobage inférieur c1 = 3.0 (cm)

supérieur c2 = 3.0 (cm)

1.2. Béton

Classe : BETON30; résistance caractéristique = 30,00 MPa

Densité : 2501,36 (kG/m3)

1.3. Hypothèses

Calculs suivant : BAEL 91 mod. 99

Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : préjudiciable

- lit inférieur : préjudiciable

Flèche admissible : 4,0 (cm)

Vérification du poinçonnement : non

Tenue au feu : 0 h

Type de calcul : flexion

1.4. Geométrie de la dalle

Epaisseur 0,25 (m)

Contour:

bord	début	fin	longu			
	x 1	y1	x2	y2		(m)
1	0,00	-12,00	10,50	-12,00	10,50	
2	10,50	-12,00	10,50	0,00	12,00	
3	10,50	0,00	0,00	0,00	10,50	
4	0,00	0,00	0,00	-12,00	12,00	

Appui:

n°	Nom	lom dimensions coordonnées							
		(m)	X	у					
1469	linéair	е	11,50	/ 0,30	6,00	-6,00	_		
1475	linéair	е	11,50	/ 0,30	1,00	-6,00	_		
1482	linéair	e	11,50	/ 0,30	8,00	-6,00	_		
1497	linéair	e	11,50	/ 0,30	7,00	-6,00	_		
1523	linéair	e	11,50	/ 0,30	9,00	-6,00	_		
1587	linéair	e	11,50	/ 0,30	5,00	-6,00	_		
1706	linéair	e	11,50	/ 0,30	3,00	-6,00	_		
1743	linéair	e	11,50	/ 0,30	2,00	-6,00 356	_		

1819 linéaire 11,50 / 0,30 4,00 -6,00 —

* - présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Ferraillage réelle (cm2/m):

15,71 23,37 28,87 19,63

Ferraillage théorique modifié (cm2/m):

14,51 21,31 26,88 19,12

Ferraillage théorique primaire (cm2/m):

14,51 21,31 26,88 19,12

Coordonnées (m):

9,00;-11,75 10,50;-12,00 10,50;-0,25 10,50;0,00

1.5.2. Moments maximaux + ferraillage pour la flexion

$$Ax(+) Ax(-) Ay(+) Ay(-)$$

Symboles: section théorique/section réelle

Ax(+) (cm2/m)	14,51/15,71	8,25/15,71	9,60/15,71	9,60/15,71
Ax(-) (cm2/m)	3,59/23,37	21,31/23,37	6,40/23,37	20,87/23,37
Ay(+) (cm2/m)	24,10/28,87	25,75/28,87	26,88/28,87	26,88/28,87
Ay(-) (cm2/m)	4,91/19,63	16,70/19,63	0,00/19,63	19,12/19,63

ELS

Mxx (kN*m/m) 64,37 -50,2022,10 -52,97

Myy (kN*m/m) 100,88 -34,1294,44 -48,00

Mxy (kN*m/m) 3,31 -42,9123,38 38,69

ELU

Mxx (kN*m/m) 86,89 -67,7829,83 -71,51

Myy (kN*m/m) 136,19 -46,06127,50 -64,80

Mxy (kN*m/m) 4,46 -57,9331,57 52,24

Coordonnées (m) 9,00;-11,75 10,50;-12,00 10,50;-0,25 10,50;0,00

Coordonnées* (m) -7,50;-5,75;6,00 -6,00;-6,00;6,00 -6,00;5,75;6,00 -6,00;6,00;6,00

* - Coordonnées dans le repère global de la structure

1.5.4. Flèche

 $|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 4.0 \text{ (cm)}$

|f(-)| = 6.3 (cm) > fdop(-) = 4.0 (cm)

2. Chargements:

Cas Type Liste Valeur

- 1 poids propre 4A6 55 60 PZ Moins
- 1 (EF) pression hydrostatique 60 Gamma=6,60[kG/m3] H=6,20[m] Direction=-Z
- 1 (EF) pression hydrostatique 6 Gamma=-6,60[kG/m3] H=7,00[m] Direction=-Z
- 1 (EF) pression hydrostatique 5 Gamma=6,60[kG/m3] H=7,00[m] Direction=-Z
- 1 (EF) pression hydrostatique 55 Gamma=-6,60[kG/m3] H=7,00[m] Direction=-Z
- 2 (EF) surfacique uniforme 60 PX=-6,60[kN/m2]
- 2 (EF) surfacique uniforme 6 PX=-6,60[kN/m2]
- 2 (EF) surfacique uniforme 5 PX=6,60[kN/m2]
- 2 (EF) surfacique uniforme 55 PX=6,60[kN/m2]

3 (EF) surfacique 3p (contour)

PZ1=-58,52[kN/m2] P1(3.25, 3, 6) P2(9.25, 3,

6) P3(9.25, 7, 6) P4(3.25, 7, 6)

14 (EF) surfacique uniforme 4

PZ=-20,00[kN/m2]

4

14 (EF) surfacique uniforme

PZ=-20,00[kN/m2]

8 (EF) surfacique 3p (contour)

4 PZ1=-3,49[kN/m2] P1(0, 0, 6) P2(12, 0, 6)

P3(12, 2, 6) P4(0, 2, 6)

Combinaison / Composante Définition

ELS/9 (1+2+3+8+14)*1.00

ELS/10 (1+3+8+14)*1.00

ELS/11 (1+2+8+14)*1.00

ELU/4 (1+14)*1.35+(2+3+8)*1.50

ELU/5 (1+14)*1.35+(3+8)*1.50

ELS/16 (1+14)*1.00

3. Résultats théoriques - disposition des armatures

Liste de solutions:

Ferraillage par barres

Solution n° Armatures Poids total

Diamètre / Poids (kG)

- 1 6706,23
- 2 6922,09
- 3 7792,24
- 4 8343,47
- 5 8481,33
- 6 9032,55
- 7 9781,63
- 8 9902,71

9 - 11128,60

10 - 15472,98

Résultats pour la solution n° 1

Zones de ferraillage

Ferraillage inférieur

Nom coordonnées			Arma	tures adopté	At	Ar					
	x1	y1	x2	y2	φ [mm] / [cm]		[cm2/m]		[cm2/m]		
1/1-	Ax Prin	cipal	0,00	-12,00	10,50 0,00	25,0/	21,0	21,31	<	23,37	
1/2-	Ay Per	pendicı	ulaire	0,00	-12,0010,50	0,00	20,0/	16,0	19,12	<	19,63

Ferraillage supérieur

Nom	om coordonnées Armatures a			dopté	es	At	Ar						
	x1	y1	x2	y2	φ [mm] / [cm]	[cm2/	m]	[cm2/	m]		
1/1+(1	l/6+)	Ax Prin	cipal	0,00	-12,00	10,50	-10,20	20,0/	20,0	14,51	<	15,71	
1/2+(1	l/6+)	Ax Prin	cipal	0,00	-1,80	10,50	0,00	20,0/	20,0	13,78	<	15,71	
1/3+(1	l/6+)	Ax Prin	cipal	0,00	-12,00	0,58	0,00	20,0/	20,0	0,84	<	15,71	
1/4+(1	l/6+)	Ax Prin	cipal	0,58	-12,00	10,50	-9,00	20,0/	20,0	1,56	<	15,71	
1/5+(1	l/6+)	Ax Prin	cipal	0,58	-3,00	10,50	0,00	20,0/	20,0	1,17	<	15,71	
1/6+	Ax Pri	incipal	9,92	-9,00	10,50	-3,00	20,0 /	20,0	0,19	<	15,71		
1/7+(1	I/12+)	Ay Pe	rpendic	ulaire	0,00	-12,00	10,50	-10,20	25,0 /	17,0	25,75	<	28,87
1/8+(1	I/12+)	Ay Pe	rpendic	ulaire	0,00	-1,80	10,50	0,00	25,0 /	17,0	26,88	<	28,87
1/9+(1	I/12+)	Ay Pe	rpendic	ulaire	0,00	-12,00	0,58	0,00	25,0 /	17,0	5,17	<	28,87
1/10+	(1/12-	H) Ay P	erpend	iculaire	0,58	-12,00	10,50	-9,00	25,0 /	17,0	6,85	<	28,87
1/11+	(1/12-	⊦) Ay P	erpend	iculaire	0,58	-3,00	10,50	0,00	25,0 /	17,0	6,51	<	28,87
1/12+	Ау Р	erpend	iculaire	9,92	-9,00	10,50	-3,00	25,0 /	17,0	0,00	<	28,87	

4. Quantitatif

Volume de Béton = 31,50 (m3)

Surface de Coffrage = 126,00 (m2)

Périmètre de la dalle = 45,00 (m)

Superficie des réservations = 0.00 (m2)

Acier HA 500

Poids total = 7212,86 (kG)

Densité = 228,98 (kG/m3)

Diamètre moyen = 22,4 (mm)

Vii CALCUL PROFILES

POUTRE PRINCIPALE

CALCUL DES STRUCTURES ACIER

NORME: CM66

TYPE D'ANALYSE: Vérification des pièces

FAMILLE:

PIECE: 66 Barre_66 **POINT:** 1 **COORDONNEE:** x = 0.00 L = 0.00 m

CHARGEMENTS:

Cas de charge décisif: 4 COMB5 (1+14)*1.35+(2+3+8)*1.50

MATERIAU:

ACIER E24 fy = 235.00 MPa

PARAMETRES DE LA SECTION: HEB 360

ht=36.0 cm

bf=30.0 cm Ay=135.00 cm2 Az=45.00 cm2 Ax=180.63 cm2

es=2.3 cm Wely=2399.64 cm3 Welz=676.08 cm3

CONTRAINTES: SigN = 94.33/180.63 = 5.22 MPa

SigFy = 378.94/2399.64 = 157.92 MPa

SigFz = 0.76/676.08 = 1.12 MPa

PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT:

en y

en z

Ly=12.00 m Muy=65.91 Lz=12.00 m Muz=15.47

Lfy=12.00 m k1y=1.00 Lfz=12.00 m k1z=1.02

Lambda y=77.60 kFy=1.02 Lambda z=160.15 kFz=1.11

.....

FORMULES DE VERIFICATION:

k1*SigN + kFy*SigFy + kFz*SigFz = 1.02*5.22 + 1.02*157.92 + 1.11*1.12 = 168.28 < 235.00 MPa (3.731)

1.54*Tauy = |1.54*-0.38| = |-0.59| < 235.00 MPa (1.313)

1.54*Tauz = 1.54*117.27 = 180.59 < 235.00 MPa (1.313)

Profil correct !!!

ENTRETOISE

CALCUL DES STRUCTURES ACIER

NORME: CM66

TYPE D'ANALYSE: Vérification des pièces

FAMILLE:

PIECE: 59 Barre_59 **POINT:** 1 **COORDONNEE:** x = 0.86 L = 9.00 m

CHARGEMENTS:

Cas de charge décisif: 4 COMB5 (1+14)*1.35+(2+3+8)*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: IPE 300

ht=30.0 cm

bf=15.0 cm Ay=32.10 cm2 Az=21.30 cm2 Ax=53.81 cm2

es=1.1 cm Wely=557.07 cm3 Welz=80.50 cm3

CONTRAINTES: SigN = 21.03/53.81 = 3.91 MPa

SigFy = 18.04/557.07 = 32.39 MPa

SigFz = 4.70/80.50 = 58.44 MPa

PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT:

en y:

en z

Ly=10.50 m Muy=74.68 Lz=10.50 m Muz=5.40

Lfy=10.50 m k1y=1.00 Lfz=10.50 m k1z=1.07

FORMULES DE VERIFICATION:

k1*SigN + kFy*SigFy + kFz*SigFz = 1.07*3.91 + 1.02*32.39 + 1.38*58.44 = 117.82 < 235.00 MPa (3.731)

1.54*Tauy = 1.54*12.53 = 19.30 < 235.00 MPa (1.313)

1.54*Tauz = |1.54*-49.63| = |-76.43| < 235.00 MPa (1.313)

Profil correct !!!

Viii CALCUL DU PIEDROIT

1. Param tres de calcul:

MATERIAU:

• BETON: classe C30/37, fc28 = 30,00 (MN/m2),

poids volumique = 25,00 (kN/m3)

• ACIER: classe HA 500, fe = 500,00 (MN/m2)

OPTIONS:

Calculs suivant la norme: béton: BAEL 91 mod. 99

sols: DTU 13.12

Enrobage: c1 = 30,0 (mm), c2 = 50,0 (mm)

• Agressivité du milieu: peu agressif

• Fissuration: préjudiciable

• Dimensionnement du mur en fonction de:

- Résistance

- Glissement g = 1,500

- Renversement g = 1,500

• Vérification du mur en fonction de:

- Tassement moyen:

 $S_{dop} = 10,00 \text{ (cm)}$

- Différence de tassements:

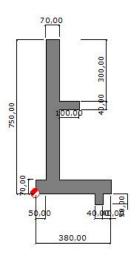
 $DS_{dop} = 5,00 \text{ (cm)}$

• Coefficients de réduction pour:

- Cohésion du sol 100,000 %

- Adhésion semelle-sol 0,000 %

- Butée du voile 50,000 %


- Butée de la b che 100,000 %

Angle de frottement sol-voile:

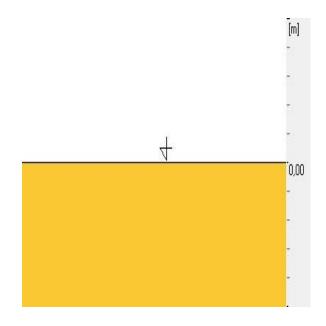
- Butée pour les sols incohérents 0xφ
 - Poussée pour les sols cohérents 2/3xφ
 - Butée pour les sols cohérents 0xφ
 - Poussée pour les sols incohérents 2/3xφ

.

2. Géométrie:

.

3. <u>Sol:</u>


Définition des param tres géotechniques suivant la méthode: A

• Talus Profondeur du sol aval Ho = 750,00 (cm)

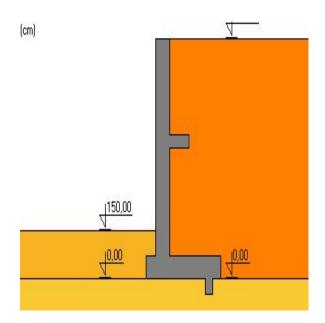
• Stratification primaire:

Param tres:

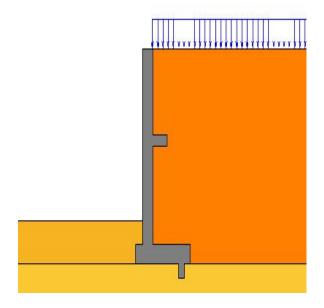
raidin troc.						
N°	Nom du sol	Niveau [cm]	Epaisseur [cm]	Cohésion [kN/m2]	Angle de frottement [Deg]	Densité [kN/m3]
1.	Sables et graves movennement compacts	0,00	-	0,00	35,00	20,00

• Sols en amont:

Param tres:


N°	Nom du sol	Niveau [cm]	Epaisseur	Cohésion	Angle de	Densité
IN	Nom du soi	Niveau [Cirij	[cm]	[kN/m2]	frottement	[kN/m3]

					[Deg]	
1	Sables et graves lâches	750,00	750,00	0,00	35,00	20,00


• Sols en aval:

Param tres:

N°	Nom du sol	Niveau [cm]	Epaisseur [cm]	Cohésion [kN/m2]	Angle de frottement [Deg]	Densité [kN/m3]
1	Sables et graves compacts	150,00	150,00	0,00	35,00	20,00

4. Charges

- Liste de charges
- . 1 uniforme

a1 d'exploitation x = 0.00 (m) P = 10.00 (kN/m2)

· 2 concentrée sur mur

a2 permanente z = 0.00 (m) V = -199.89 (kN) H = -0.00 (kN) M = 0.00 (kN*m)

3 concentrée sur mur

a3 d'exploitation $z = 0.00 \, (m)$ $V = -80.00 \, (kN)$ $H = -0.00 \, (kN)$ $M = 0.00 \, (kN*m)$

.

5. Résultats de calculs géotechniques

. POUSSEES

Poussée et butée des terres : conforme aux déplacements du mur Coefficients de poussées et butées limites et équilibres pour les sols:

Angle d'inclinaison moyen du talus ϵ = 0,00 (Deg) Angle d'inclinaison du voile β = 0,00 (Deg)

$$K_a = \frac{\cos^2 \cdot (\mathsf{S} - \mathsf{W})}{\cos^2 \mathsf{S} \cdot \cos(\mathsf{S} + \mathsf{U}) \cdot \left(1 + \sqrt{\frac{\sin(\mathsf{W} + \mathsf{U}) \cdot \sin(\mathsf{W} - \mathsf{V})}{\cos(\mathsf{S} + \mathsf{U}) \cdot \cos(\mathsf{S} - \mathsf{V})}}\right)^2}$$

$$K_{p} = \frac{\cos^{2} \cdot (S + W)}{\cos^{2} S \cdot \cos(S + U) \cdot \left(1 - \sqrt{\frac{\sin(W + U) \cdot \sin(W + V)}{\cos(S + U) \cdot \cos(S - V)}}\right)^{2}}$$

$$K_o = \frac{\dagger_x}{\dagger_z} = \frac{\in}{1 - \in}$$

$$K_a \leq K_o \leq K_p$$

Sols en amont:

N°	Nom du sol	Niveau [cm]	Angle de frottement [Deg]	Ka	Ko	Кр
1.	Sables et graves lâches	750,00	35,00	0,244	0,429	3,690

Déplacements limites totaux

butée 0,115

poussée 0,012

Sols en aval:

N°	Nom du sol	Niveau [cm]	Angle de frottement [Deg]	Ka	Ko	Кр
1.		0,00		0,244	0,429	3,690
2.	Sables et graves compacts	150,00	35,00	0,244	0,429	3,690

Déplacements limites totaux

butée 0,128

poussée 0,013

RESISTANCE

• Type de sol sous la semelle: uniforme

- Combinaison dimensionnante: 1,000*PM + 1,000*P'a + 1,000*Pa + 1,000*PT + 1,000*PT + 1,000*a2 + 1,000*a1
- Charge dimensionnante réduite:

N=-446,21 (kN/m) My=-471,42 (kN*m) Fx=-124,16 (kN/m) Coefficient de sécurité: 1,696 > 1,000

TASSEMENT

- Type de sol sous la fondation: uniforme
- Combinaison dimensionnante: 1,000*PM + 1,000*P'a + 1,000*Pa + 1,000*PT + 1,000*PT + 1,000*a2 + 1,000*a1
- Charge dimensionnante réduite:

N=-446,21 (kN/m) My=-471,42 (kN*m) Fx=-124,16 (kN/m)

- Charge caractéristique unitaire due aux charges totales: q = 0,12 (MN/m2)
- Epaisseur du sol en tassement active: z = 380,00 (cm)
- Contrainte au niveau z:
 - additionnelle: szd = 0,01 (MN/m2)
 - due au poids du sol: szg = 0.09 (MN/m2)
- Tassement: S = 0,35 (cm) < Sdop = 10,00 (cm)

RENVERSEMENT

- Combinaison dimensionnante: 1,000*PM + 1,000*P'a + 1,553*Pa + 1,000*P'T + 0,900*PT + 1,350*a2 + 1,500*a3
- Charge dimensionnante réduite:

N=-212,28 (kN/m) My=-350,66 (kN*m) Fx=-162,24 (kN/m)

- Moment de renversement: Mo= 787,90 (kN*m)
- Moment emp chant le renversement de la fondation: M_{iif} = 1205,43 (kN*m)
- Coefficient de sécurité: 1,530 > 1,500

GLISSEMENT

- Combinaison dimensionnante: 1,000*PM + 1,000*P'a + 1,000*Pa + 1,000*PT + 1,000*PT + 1,000*a2 + 1,000*a3
- Charge dimensionnante réduite:

N=-337,15 (kN/m) My=-468,46 (kN*m) Fx=-122,75 (kN/m)

- Dimensions équivalentes de la semelle: A = 380,00 (cm)
- Coefficient de frottement:
 - du sol (position du sol): f = 0.462
- Coefficient de réduction de la cohésion du sol = 100,000 %
- Cohésion: C = 0,00 (kN/m2)
- Valeur de la force de glissement: Q_{tr} = 122,75 (kN/m)
- Valeur de la force emp chant le glissement du mur:

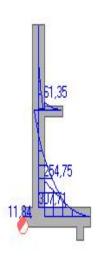
 $Q_{tf} = N * f + C * A$

- au niveau du sol: $Q_{tf} = 176,10 \text{ (kN/m)}$
- Coefficient de sécurité: 1,435 < 1,500

ANGLES DE ROTATION

- Type de sol sous la fondation: uniforme
- Combinaison dimensionnante: 1,000*PM + 1,000*P'a + 1,000*Pa + 1,000*PT + 1,000*PT + 1,000*a2 + 1,000*a1
- Charge dimensionnante réduite:

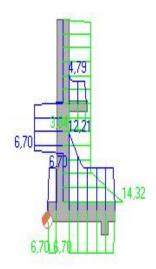
N=-446,21 (kN/m) My=-471,42 (kN*m) Fx=-124,16 (kN/m)


- Contraintes unitaires maximales caractéristiques dues aux charges totales: qmax = 0,15 (MN/m2)
- Contraintes unitaires mimimales caractéristiques dues aux charges totales: qmin = 0,08 (MN/m2)
- Angle de rotation: ro = 0,04 (Deg)
- Coordonnées du point de rotation du voile:

X = 829,07 (cm)Z = 0,00 (cm)

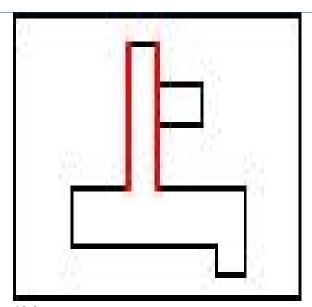
• Coefficient de sécurité: 20,181 > 1,500

6. Résultats de calcul béton armé

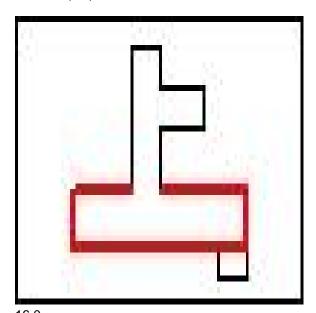

Moments

(kN*m)

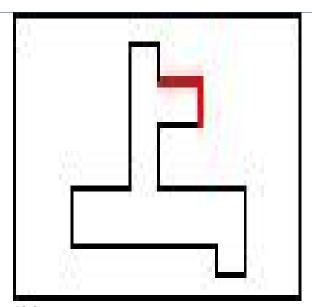
Elé ment	Moments	Valeur [kN*m]	Position [cm]	Combinaison
Voile	maximum	375,73	70,00	1,000*PM + 1,350*P'a + 0,850*Pa + 1,000*P'T + 1,485*PT + 1,350*a2 + 1,500*a3
Voile	minimum	-60,35	430,00	1,350*PM + 1,000*P'a + 0,850*Pa + 1,350*P'T + 1,485*PT + 1,000*a2
Semelle	maximum	26,69	50,00	1,350*PM + 1,000*P'a + 1,553*Pa + 1,000*P'T + 1,485*PT + 1,000*a2 + 1,500*a1
Semelle	minimum	-324,92	120,00	1,000*PM + 1,350*P'a + 0,850*Pa + 1,000*P'T + 1,485*PT + 1,350*a2 + 1,500*a3


Ferraillage

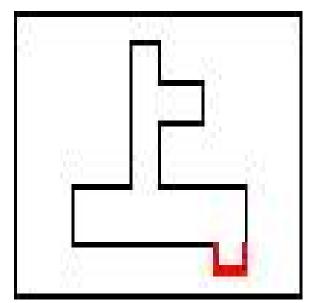
(cm2/m)


Position	Section d'acier théorique [cm2/m]	Barres		Espacement [cm]	Surface réelle [cm2/m]
voile gauche	6,70	16,0	tous les	14,00	14,36
voile gauche (h/3)	6,70	12,0	tous les	16,00	7,07
voile gauche (h/2)	6,70	12,0	tous les	16,00	7,07
voile droite		16,0	tous les	14,00	14,36
voile droite (h/3)	6,70	12,0	tous les	16,00	7,07
voile droite (h/2)	6,70	12,0	tous les	16,00	7,07
tablette 1 (+)	4,79	12,0	tous les	23,00	4,92
tablette 1 (-)	3,84	12,0	tous les	23,00	4,92
semelle gauche (+)	6,70	16,0	tous les	16,00	12,57
semelle gauche (-)	6,70	16,0	tous les	16,00	12,57
semelle droite (+)	12,21	16,0	tous les	16,00	12,57
semelle droite (-)	6,70	16,0	tous les	16,00	12,57

Nomenclature des armatures:


- Type:Barres:
- Espacement:
- nombre:
- longueur:

- 16,0 14,00 (cm)
- 1595,39 (cm)


- Type:Barres:
- Espacement:
- nombre:
- longueur:

- 16,0 16,00 (cm)
- 903,83 (cm)

- Type:Barres:
- Espacement:
- nombre:
- longueur:

- 10,0 14,00 (cm)
- 252,20 (cm)

- Type:Barres:
- Espacement:
- nombre:
- longueur:

- 10,0
- 16,00 (cm)
- 307,84 (cm)

IX CALCUL DU MUR EN AILE

1. Param tres de calcul:

MATERIAU:

• BETON: classe C25/30, fc28 = 25,00 (MN/m2),

poids volumique = 25,00 (kN/m3)

• ACIER: classe HA 500, fe = 500,00 (MN/m2)

OPTIONS:

Calculs suivant la norme: béton: BAEL 91 mod. 99

sols: DTU 13.12

• Enrobage: c1 = 30,0 (mm), c2 = 50,0 (mm)

• Agressivité du milieu: peu agressif

• Fissuration: préjudiciable

• Dimensionnement du mur en fonction de:

- Résistance

- Glissement g = 1,500

- Renversement g = 1,500

• Vérification du mur en fonction de:

- Tassement moyen:

 $S_{dop} = 10,00 \text{ (cm)}$

- Différence de tassements:

 $DS_{dop} = 5,00 \text{ (cm)}$

• Coefficients de réduction pour:

- Cohésion du sol 100,000 %

- Adhésion semelle-sol 0,000 %

· - Butée du voile 50,000 %

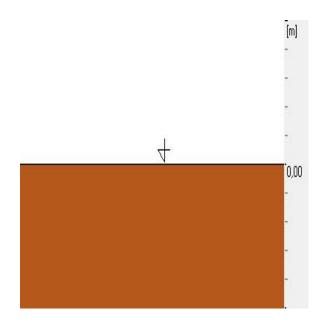

- Butée de la b che 100,000 %

Angle de frottement sol-voile:

- Butée pour les sols incohérents 0xφ
 - Poussée pour les sols cohérents 2/3xφ
 - Butée pour les sols cohérents 0xφ
 - Poussée pour les sols incohérents 2/3xφ

.

2. Géométrie:



3. <u>Sol:</u>

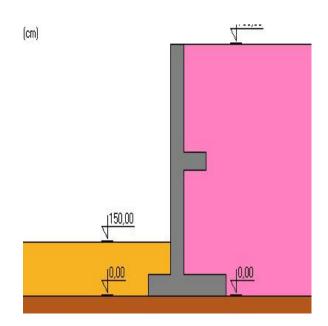
- Définition des param tres géotechniques suivant la méthode: A
- **Talus** Profondeur du sol aval Ho = 700,00 (cm)
- Stratification primaire:

Param tres:

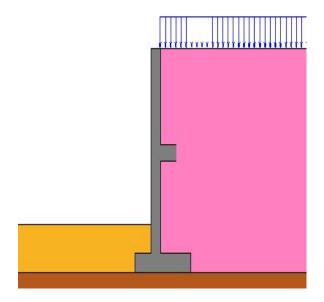
N°	Nom du sol	Niveau [cm]	Epaisseur [cm]	Cohésion [kN/m2]	Angle de frottement [Deg]	Densité [kN/m3]
1.	Argiles et limons fermes	0,00	-	20,00	30,00	20,00

• Sols en amont:

Param tres:


i arai	11 1100.					
N°	Nom du sol	Niveau [cm]	Epaisseur [cm]	Cohésion [kN/m2]	Angle de frottement [Deg]	Densité [kN/m3]

1	Sables et graves compacts	700,00	700,00	0,00	35,00	20,00	
---	---------------------------	--------	--------	------	-------	-------	--


• Sols en aval:

Param tres:

N°	Nom du sol	Niveau [cm]	Epaisseur [cm]	Cohésion [kN/m2]	Angle de frottement [Deg]	Densité [kN/m3]
1	Sables et graves compacts	150,00	150,00	0,00	35,00	20,00

4. Charges

- Liste de charges
- · 1 uniforme

P = 20,00 (kN/m2)d'exploitation x = 0.00 (m)a1

5. Résultats de calculs géotechniques

POUSSEES

Poussée et butée des terres : conforme aux déplacements du mur Coefficients de poussées et butées limites et équilibres pour les sols:

Angle d'inclinaison moyen du talus ε = 0,00 (Deg) Angle d'inclinaison du voile $\beta = 0.00$ (Deg)

$$K_{a} = \frac{\cos^{2} \cdot (S - W)}{\cos^{2} S \cdot \cos(S + U) \cdot \left(1 + \sqrt{\frac{\sin(W + U) \cdot \sin(W - V)}{\cos(S + U) \cdot \cos(S - V)}}\right)^{2}}$$

$$K_{p} = \frac{\cos^{2} \cdot (S + W)}{\cos^{2} S \cdot \cos(S + U) \cdot \left(1 - \sqrt{\frac{\sin(W + U) \cdot \sin(W + V)}{\cos(S + U) \cdot \cos(S - V)}}\right)^{2}}$$

$$K_{q} = \frac{\dagger_{x}}{dx} = \frac{\xi_{q}}{dx}$$

$$K_o = \frac{\dagger_x}{\dagger_z} = \frac{\epsilon}{1 - \epsilon}$$

$$K_a \leq K_o \leq K_p$$

Sols en amont.

1	2012 6	ii aiiioiit.					
	N°	Nom du sol	Niveau [cm]	Angle de frottement [Deg]	Ka	Ko	Кр
	1.	Sables et graves compacts	700,00	35,00	0,244	0,429	3,690

- Déplacements limites totaux
- butée 0,116
- poussée 0,012

Sols en aval:

· N°	Nom du sol	Niveau [cm]	Angle de frottement [Deg]	Ka	Ко	Кр
1.		150,00		0,244	0,429	3,690

- Déplacements limites totaux
 - butée 0,129
- poussée 0,013

RESISTANCE

- Type de sol sous la semelle: uniforme
- Combinaison dimensionnante: 1,000*PM + 1,000*P'a + 1,000*Pa + 1,000*PT + 1,000*PT + 1,000*a1
- Charge dimensionnante réduite:

N=-510,88 (kN/m) My=-146,31 (kN*m) Fx=-85,73 (kN/m)Coefficient de sécurité: 1,496 > 1,000

TASSEMENT

- Type de sol sous la fondation: uniforme
- Combinaison dimensionnante: 1,000*PM + 1,000*P'a + 1,000*Pa + 1,000*PT + 1,000*PT + 1,000*a1
- Charge dimensionnante réduite:

N=-510,88 (kN/m) My=-146,31 (kN*m) Fx=-85,73 (kN/m)

- Charge caractéristique unitaire due aux charges totales: q = 0,15 (MN/m2)
- Epaisseur du sol en tassement active: z = 525,00 (cm)
- Contrainte au niveau z:
 - additionnelle: szd = 0,01 (MN/m2)
 - due au poids du sol: szg = 0,11 (MN/m2)
- Tassement: S = 5,06 (cm) < Sdop = 10,00 (cm)

RENVERSEMENT

- Combinaison dimensionnante: 1,000*PM + 1,000*P'a + 1,553*Pa + 1,000*P'T + 0,900*PT + 1,500*a1
- Charge dimensionnante réduite:

N=-539,13 (kN/m) My=-27,41 (kN*m) Fx=-154,54 (kN/m)

- Moment de renversement: Mo= 494,66 (kN*m)
- Moment emp_chant le renversement de la fondation: M_{uf} = 1130,21 (kN*m)
- Coefficient de sécurité: 2,285 > 1,500

GLISSEMENT

- Combinaison dimensionnante: 1,000*PM + 1,000*P'a + 1,000*Pa + 1,000*PT + 1,000*PT + 1,000*a1
- Charge dimensionnante réduite:

N=-510,88 (kN/m) My=-146,31 (kN*m) Fx=-85,73 (kN/m)

- Dimensions équivalentes de la semelle: A = 350.00 (cm)
- Coefficient de frottement:
 - du sol (position du sol): f = 0.381
- Coefficient de réduction de la cohésion du sol = 100,000 %
- Cohésion: C = 20,00 (kN/m2)
- Valeur de la force de glissement: Q_{tr} = 85,73 (kN/m)
- Valeur de la force emp chant le glissement du mur:

$$Q_{tf} = N * f + C * A$$

- au niveau du sol: $Q_{\rm ff} = 264,67 \, (kN/m)$
- Coefficient de sécurité: 3.087 > 1.500

ANGLES DE ROTATION

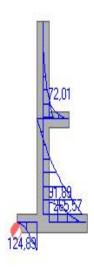
- Type de sol sous la fondation: uniforme
- Combinaison dimensionnante: 1,000*PM + 1,000*P'a + 1,000*Pa + 1,000*PT + 1,000*PT + 1,000*a1
- Charge dimensionnante réduite:

N=-510,88 (kN/m) My=-146,31 (kN*m) Fx=-85,73 (kN/m)

Contraintes unitaires maximales caractéristiques dues aux charges totales:

qmax = 0.21 (MN/m2)

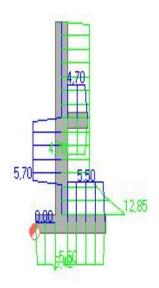
- Contraintes unitaires mimimales caractéristiques dues aux charges totales:
 - qmin = 0.08 (MN/m2)
- Angle de rotation: ro = 0,79 (Deg)
- Coordonnées du point de rotation du voile:


X = 561,25 (cm)

Z = 0.00 (cm)

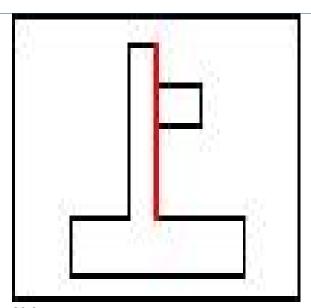
• Coefficient de sécurité: 1,032 < 1,500

6. Résultats de calcul béton armé


Moments

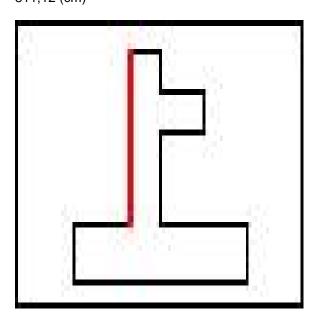
(kN*m)

Elé ment	Moments	Valeur [kN*m]	Position [cm]	Combinaison
Voile	maximum	298,72	60,00	1,000*PM + 1,000*P'a + 1,553*Pa + 1,000*P'T + 0,900*PT + 1,500*a1
Voile	minimum	-63,32	375,00	1,350*PM + 1,000*P'a + 0,850*Pa + 1,000*P'T + 1,485*PT
Semelle	maximum	129,69	100,00	1,350*PM + 1,000*P'a + 1,553*Pa + 1,000*P'T + 0,900*PT + 1,500*a1
Semelle	minimum	-126,63	160,00	1,000*PM + 1,000*P'a + 1,553*Pa + 1,350*P'T + 0,900*PT + 1,500*a1

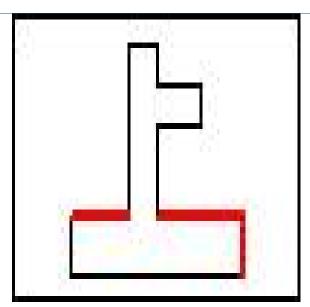

Ferraillage

(cm2/m)

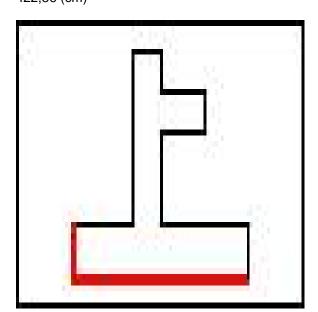
Position	Section d'acier théorique [cm2/m]	Barres		Espacement [cm]	Surface réelle [cm2/m]
voile gauche	5,70	12,0	tous les	19,00	5,95
voile gauche (h/3)	5,70	12,0	tous les	19,00	5,95
voile droite	12,85	16,0	tous les	15,00	13,40
voile droite (h/3)	5,70	12,0	tous les	19,00	5,95
voile droite (h/2)	5,70	12,0	tous les	19,00	5,95
tablette 1 (+)	4,70	12,0	tous les	24,00	4,71
tablette 1 (-)	4,70	12,0	tous les	24,00	4,71
semelle gauche (-)	6,42	12,0	tous les	17,00	6,65
semelle droite (+)	5,50	12,0	tous les	20,00	5,65
semelle droite (-)	5,50	12,0	tous les	20,00	5,65
semelle gauche (+)	0,00	10,0	tous les	14,00	5,61


Nomenclature des armatures:

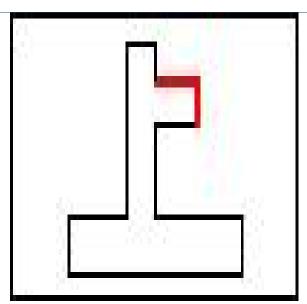
- Type:Barres:
- Espacement:
- nombre:
- longueur:


20,0 24,00 (cm)

811,12 (cm)


- Type:Barres:
- Espacement:
- nombre:
- longueur:

- 12,0
- 19,00 (cm)
- 731,19 (cm)


- Type:Barres:
- Espacement:
- nombre:
- longueur:

- 10,0 14,00 (cm)
- 422,56 (cm)

- Type:Barres:
- Espacement:
- nombre:
- longueur:

- 10,0
- 12,00 (cm)
- 422,56 (cm)

- Type:Barres:
- Espacement:
- nombre:
- longueur:

- 12,0 24,00 (cm) 4
- 266,38 (cm)

VII .PLANS D'EXECUTION ET APPAREIL D'APPUI

DALLE DE TRANSITION

La dalle de transition est dimensionnée conformément aux recommandations du SETRA dans le guide « Dalles de transition des ponts-routes-Techniques et réalisation » d'octobre 1984.

Elle est calculée en supposant simplement appuyée d'une part sur le corbeau d'appui et d'autre part sur le remblai (prenant appui sur une largeur de 60cm de remblai voir figure ci-dessous). Elle est soumise aux surcharges provenant du système des essieux tandem Bt ; les calculs sont menés aux ELU.

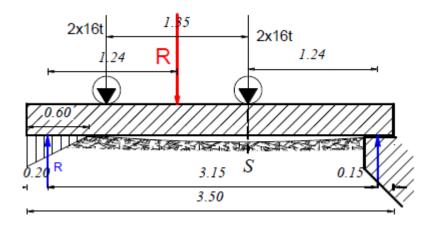


Figure 16 : Schéma mécanique de calcul de la dalle de transition

Calcul des sollicitations

Le moment dû aux charges de chaussée est maximal à l'abscisse S et vaut : $M_Q=43.7kNm/ml\ de\ dalle$

Le moment dû aux charges permanentes vaut :

$$M_G = \omega_b \times e_b \times \frac{l^2}{8} = 25 \times 0.3 \times \frac{3.15^2}{8} = 9.30 kN.m/ml$$

A l'ELU on a:
$$M_u=1.35\times M_G+1.605\times M_Q~M_u=73,94kN.m/ml$$

▶ Calcul des armatures

$$\mu_{bu} = \frac{M_u}{b \times d^2 \times f_{bu}} = 0.06 < 0.227~pas~d'armatures~comprimées$$

$$A_{su} = \frac{M_u}{d(1-0.4 \times \alpha) \times f_{su}}$$
 $A_{su} = 8, 12cm^2$

Moment	Section	Section	Choix	retenue	
73.06	8.12 cm ²	3.31 cm ²	8HA14/m	12.32cm ²	12.5 cm
	Armatures de	réparation $A_r =$	$\frac{A_{su}}{4}=2.03cm^2,$	soit 4HA10/ml	

VIII.3. Calcul des appareilles d'appuis

Le calcul des appareils d'appuis sera effectué à partir SETRA dans le guide Appareil d'appuis en Elastomère frette. Nous utiliserons des élastomères frettés.

VIII.3.2. Prédimensionnement des appareils d'appuis

Dimensions en plan

D'après le SETRA : $3MPa \le \sigma_m \le 20MPa$.

Aussi:
$$\frac{P_2}{20MPa} \le A' \le \frac{P_1}{3MPa'}$$

Avec A' la section nette réelle de l'élastomère. Soit : $250cm^2 \le A' \le 815cm^2$.

Choix:
$$\begin{cases} a = 20cm \\ b = 30cm \\ e = 5mm \end{cases}$$

Vérification :
$$A' = (20 - 2 \times 0.50) \times (30 - 0.50 \times 2) = 551cm^2 < 815cm^2 OK!$$

Hauteur totale T des couches d'élastomère

Il est recommandé d'avoir : $\frac{a}{10} \le T \le \frac{a}{5}$

Soit : $20mm \le T \le 40mm$. en choisissant 3 feuillets intermédiaires de 8mm, les feuillets externes auront 3mm, pour une hauteur totale de $T = 8 \times 3 + 2 \times 3 = 30mm$.

VIII.3.3. Vérification du dimensionnement

▶ Calculs préliminaires

$$\begin{cases} Petit\ cot\'e\ r\'eduit:\ a'=a-2e=0,19m;\\ Grand\ c\^ot\'e\ r\'eduit:\ b'=b-2e=0,29m\\ Aire\ nette:\ A'=a'\times b'=551cm^2 \end{cases}$$

Déplacement de l'appareil d'appui dû à la force de freinage : $V_{\chi} = \frac{F_{\chi}.T}{2.G.a'.b'}$

avec G étant le module de cisaillement conventionnel, G= 0,9Mpa.

$$V_x = 0.04m$$
.

Aire nette après distorsion : $A_r = A' \times \left(1 - \frac{V_x}{a'} - \frac{V_y}{b'}\right)$.

$$\begin{cases} V_y = 0 \\ A_r = 439 \text{cm}^2 \end{cases}$$

Vérification de la stabilité au flambement et au glissement

Flambement

Condition		$\sigma_m \leq \sigma_{lim}$	
Calcul des contraintes	$\sigma_m = \frac{V_{max}}{A_r}$	$\sigma_m = \frac{498,47.10^{-3}}{551.10^{-4}}$	$\sigma_m = 9,05MPa$
	$\sigma_{lim} = \frac{2 \times a' \times G \times S_1}{3T}$ $S_1 = \frac{a' \times b'}{2t(a' + b')}$	$\sigma_{llm} = \frac{2 \times 0, 19 \times 0, 9 \times 7, 175}{3 \times 30. \ 10^{-3}}$	$\sigma_{lim}=27,26MPa$
Conclusion		Vérifié	
	Glisser	nent	
Condition		$F_x \leq F_{xlim}$	
Calcul des contraintes	$F_{xlim} = \mu_e F_z,$	$F_{x_{lim}}$	$F_{xlim} = 95,05MPa$
	μ_e	= 0,261	
	$=0.1+\frac{1.5\times K_f}{\sigma_m}$	$\times \left(0.1 + \frac{1.5.0,60}{5.56}\right)$	
	$\sigma_m = \frac{P_1}{A_r}$		
	$K_f = 0.60$		
Conclusion		$F_{xlim} \le 130,54 \rightarrow \mathbf{V} \hat{\mathbf{e}}$ rifié	
	Rotat	ion	
Condition		$v_z \ge v_{zlim}$	
Calcul des contraintes	$\boldsymbol{v_z} = \sum \frac{F_z t_i}{A'} \left(\frac{1}{5GS_1^2} + \frac{1}{E_b} \right)$	$\frac{5 \times 498,47.10^{-3} \times 8}{0,19 \times 0,29} \left(\frac{1}{5 \times 0,9 \times 7,175^{2}} + \frac{1}{2000}\right)$	$F_{xlim} = 95,05MPa$
	$ u_{zlim}$	$\frac{0,19 \times 0,01263 \times 10^3}{3}$	$v_{zlim} = 0.80mm$
	$=\frac{a'.\alpha_a+b'.\alpha_b}{K_r}$	3	
Conclusion		$ u_{zlim} \le \nu_z \to V$ érifié	

Dimensionnement des frettes.

Pour les frettes, l'acier utilisé est de type S235

L'épaisseur des frettes est donnée par la relation : $t_s \geq \frac{2,6.F_z t_i}{A_r f_y}$ avec $f_y = 235 MPa$, $f_Z = effort vertial maximal et <math>t_i = l$ 'épaisseur d'un feuillet = 8mm

D'où
$$t_s \ge \frac{2,6 \times 498,47 \times 10^{-3} \times 8}{439 \times 10^{-4} \times 235} = 0,73 mm.$$

Pour un appareil d'appui de type 200x300, le choix est porté sur des frettes d'épaisseur $t_s = 3mm$.

Les appareils d'appui à mettre en place seront donc : 200×300 ; $4\times(8+2)$; 2×5

La hauteur totale des appareils d'appui vaut donc : $H = 3 \times 8 + 2 \times 3 + 5 \times 2 = 40 mm$.

VIII.4. Etude des joints de chaussée

Ce sont des dispositifs permettant d'assurer la continuité de la circulation au droit d'une coupure de tablier. Ils permettent aux véhicules de traverser dans de bonnes conditions, et jouent un rôle de régulateur contribuant à diminuer les effets des véhicules lourds.

VIII.4.1. Calcul du souffle d'un joint

Le souffle est le déplacement maximal entre les positions extrêmes du joint. Les effets à prendre en compte ici sont :

- 1. Les effets dus à la température ;
- **2.** Les effets dus aux déformations différés du béton ;
- 3. Les actions causées par les charges d'exploitation.

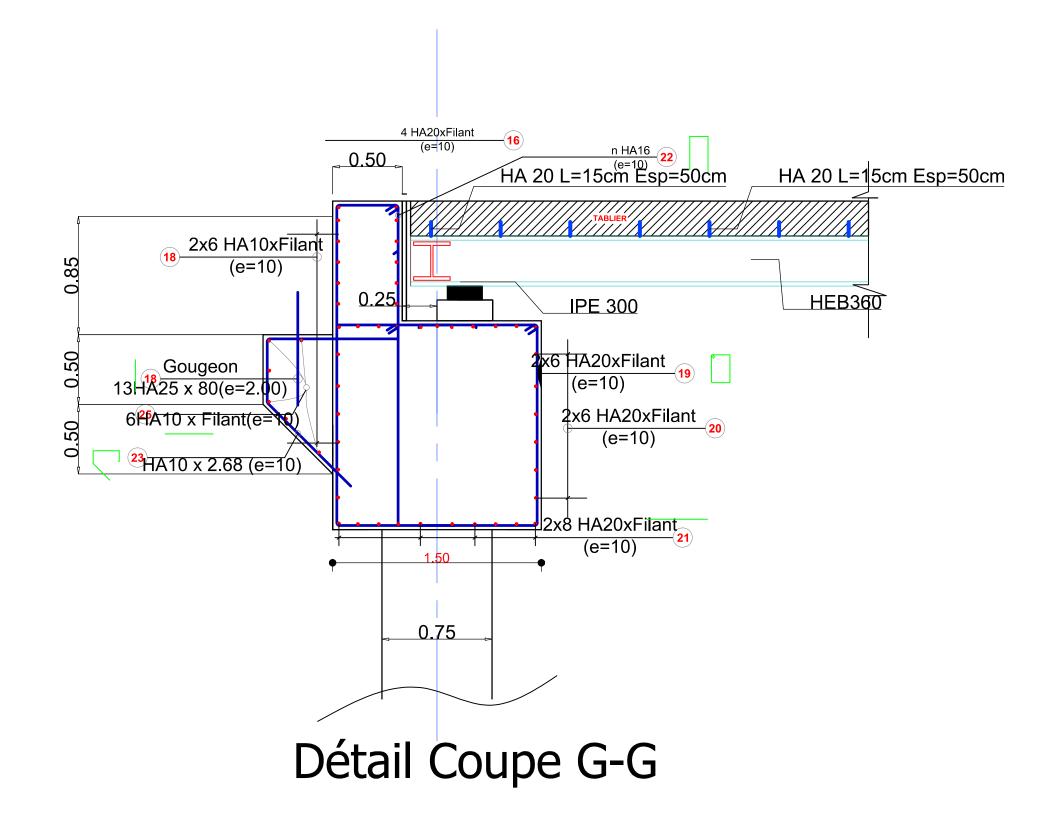
Effets dus à la température

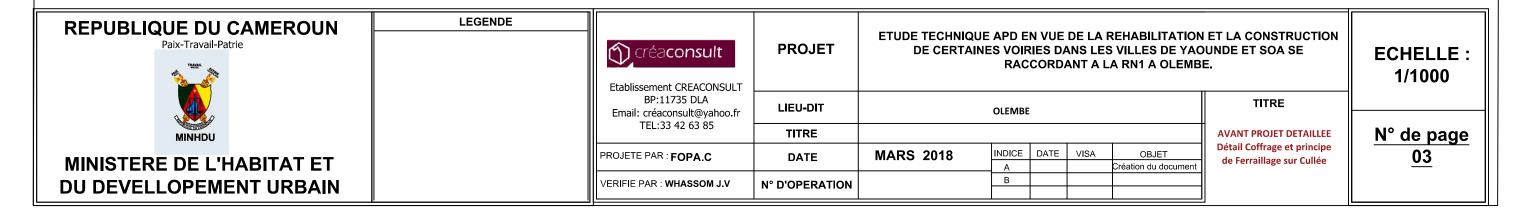
La variation de longueur est fonction de la température et est donné par : $\Delta L_1 = L\lambda\Delta T$; avec L qui est la longueur dilatable L = 12,40m, λ est le coefficient de dilatation du béton $\lambda = 10^{-5}$ et ΔT est la variation uniforme de température $\Delta T = 50^{\circ}$ on obtient donc :

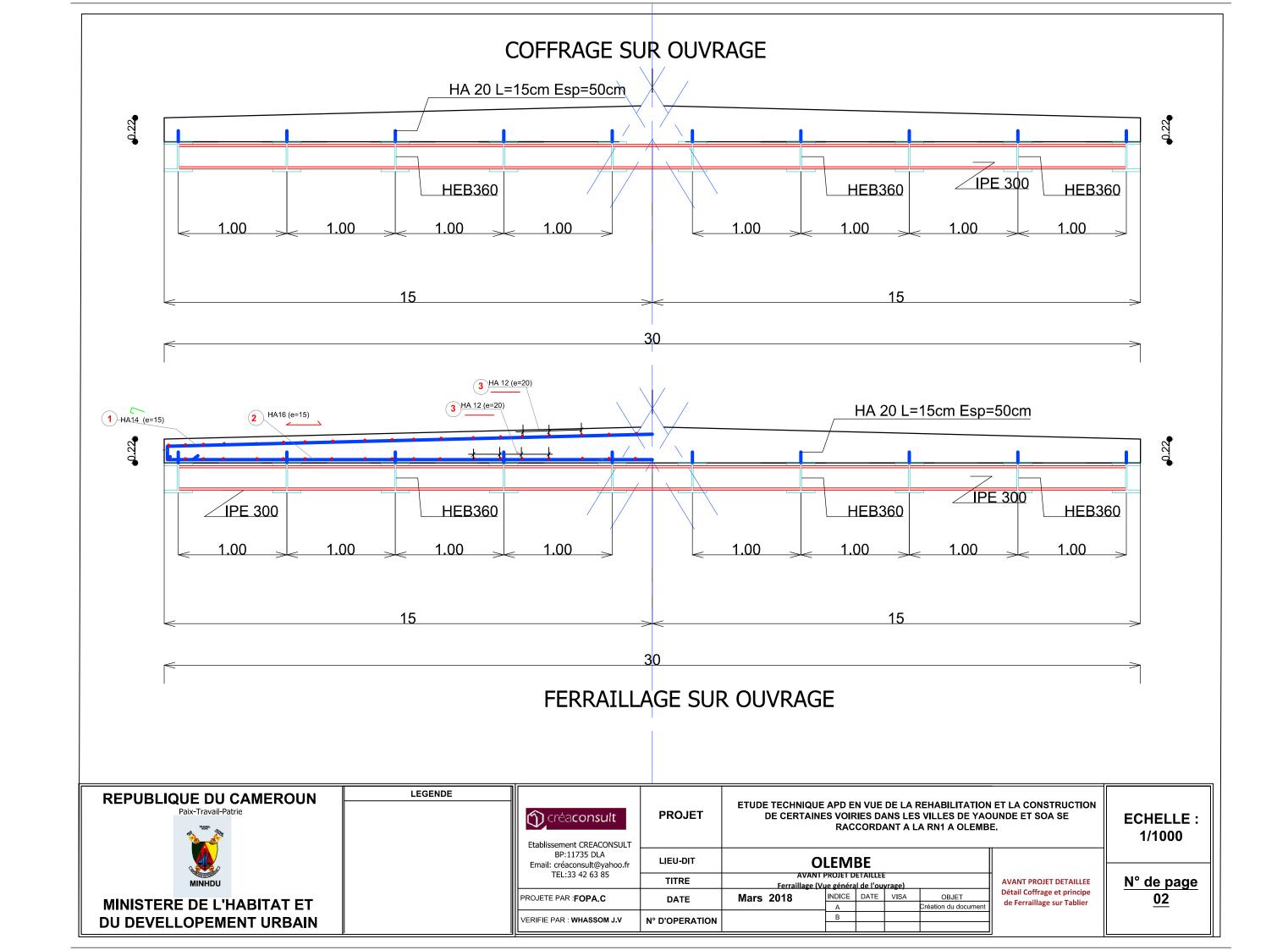
 $\Delta L_1 = 6, 1mm.$

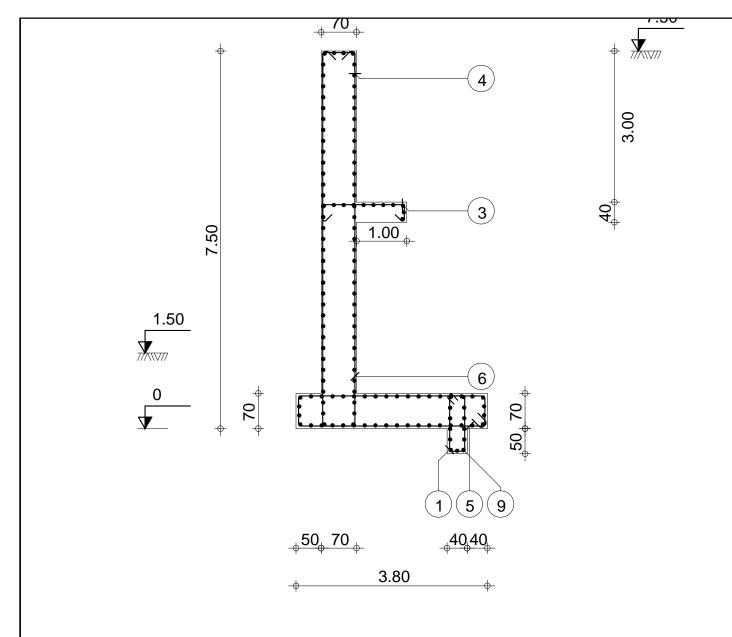
Effets dus aux déformations différées du béton

Il s'agit de la variation de longueur due au retrait final du béton qui est : $\Delta L_2 = L\varepsilon_r$ avec ε_r qui est la déformation relative due au retrait de béton compris entre 5×10^{-4} et 6×10^{-4} on prendra 5×10^{-4} puisque nous sommes en climat sec : on obtient donc $\Delta L_2 = 6,2mm$. Le fluage ne concerne que les ouvrages en précontraint donc n'est pas considéré ici.

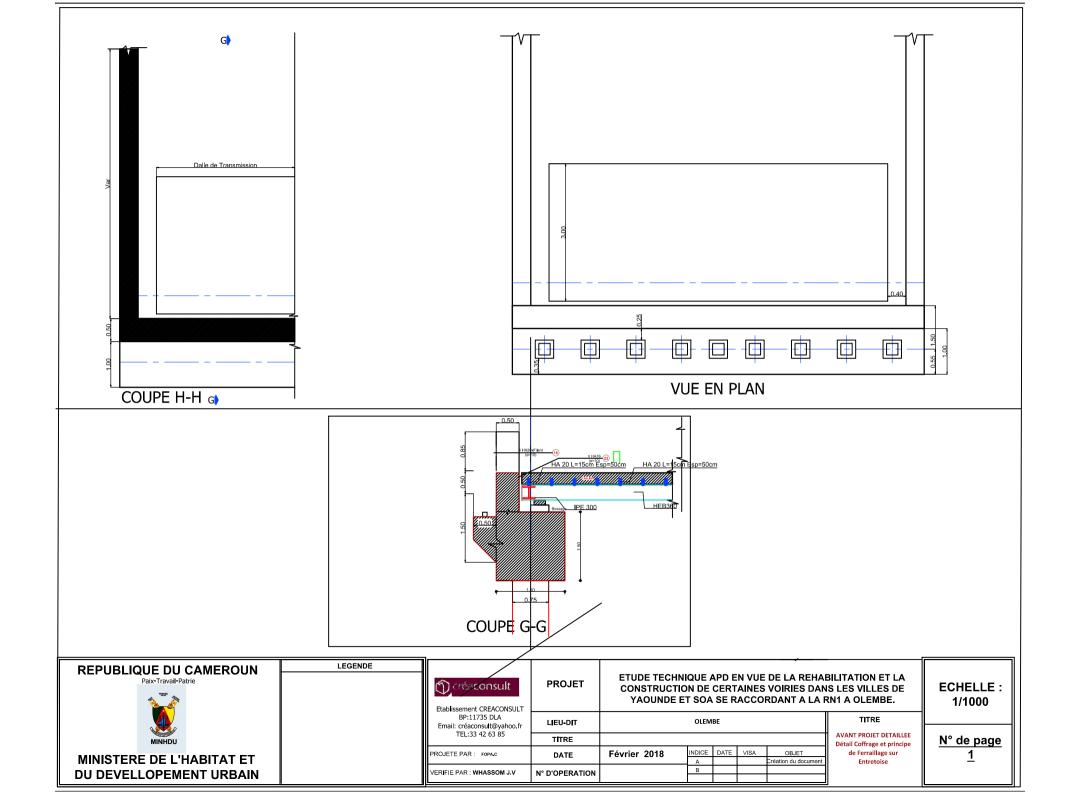

► Effets dues aux charges d'exploitation

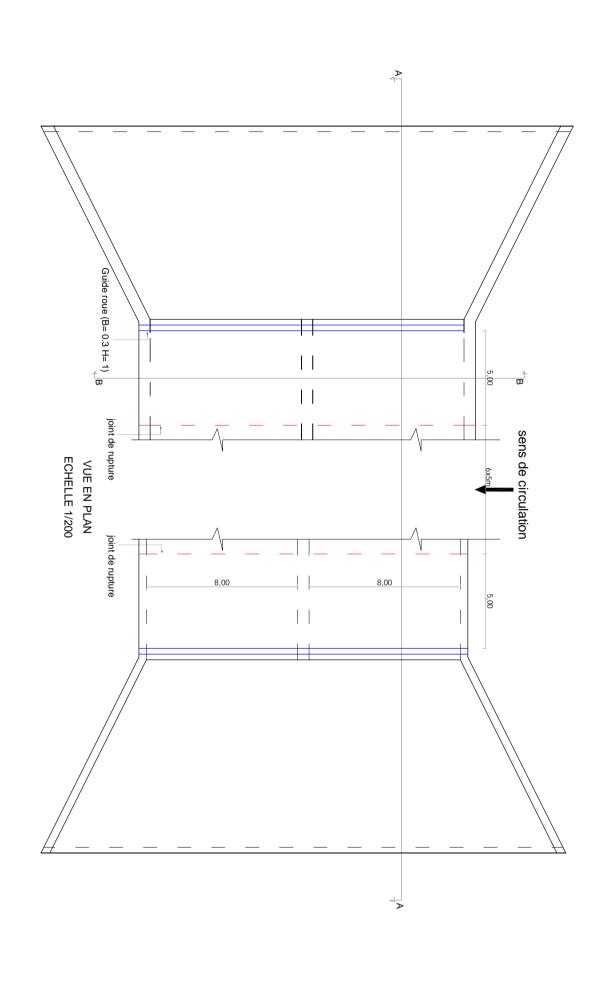

Il est admis 10mm de variation linéaire du joint par mètre de hauteur de poutre (CALGARO 2000). Etant donné que la hauteur de ce projet est h= 0,75m on a donc $\Delta L_3 = 7,5mm$.

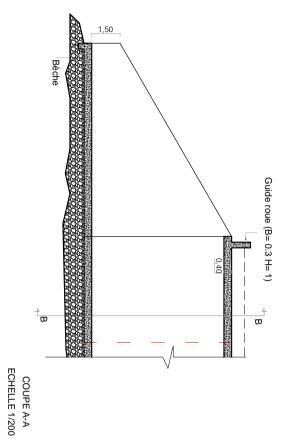

On obtient donc une valeur de souffle $S = \Delta L_1 + \Delta L_2 + \Delta L_3 = 19,8mm$.

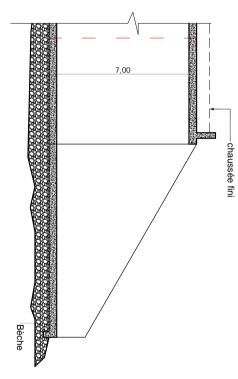

VIII.4.2. Choix du joint

Le type de joint dépend toujours de la valeur du souffle il est donc pris un joint de chaussée de type hiatus dont la gamme de souffle est de l'ordre de 50mm.







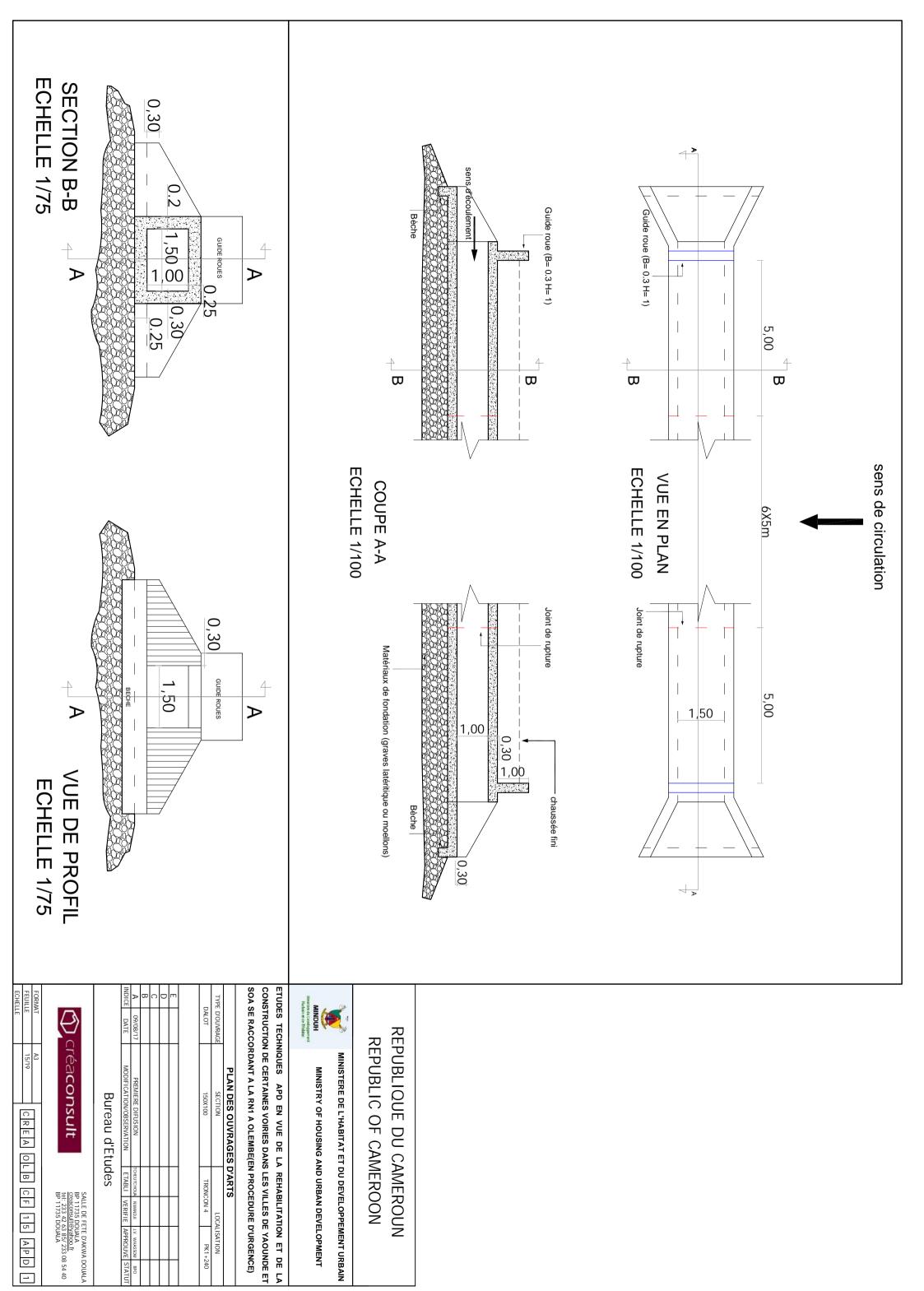

Pos.	Arı	mature	Code	Forme
1	6HA 10,0	l=3.23		1.11 24 1.15
3	7HA 12,0	l=2.67		4 N
4	7HA 10,0	l=1.45		42 65
5	6HA 16,0	l=9.14		3.74 8 3.72
6	7HA 16,0	l=16.05		7.46 6 7.46 %
9	136HA 10,0	l=1.00		1.00

		Tél. Fax	Béton = 8.02 m3		HA 500500
	Fissuration	n peu préjudiciable	Fc28 = 30MPa		
1		PIEDROIT	Surface du coffrage = 25.6 m	2 Enrobage pour voile = 3 cm	
1		PIEDROIT		Enrobage pour semelle = 5cm	
	DDO JET OF EMBE CHI EE DON'T A DOUTDE C	OUE CHAUCCE		Echelle pour la vue 1/75	Dog 1/1
	PROJET OLEMBE.CULEE PONT A POUTRE S	OUS CHAUSSEE		Echelle pour la section 1/75	Page 1/1

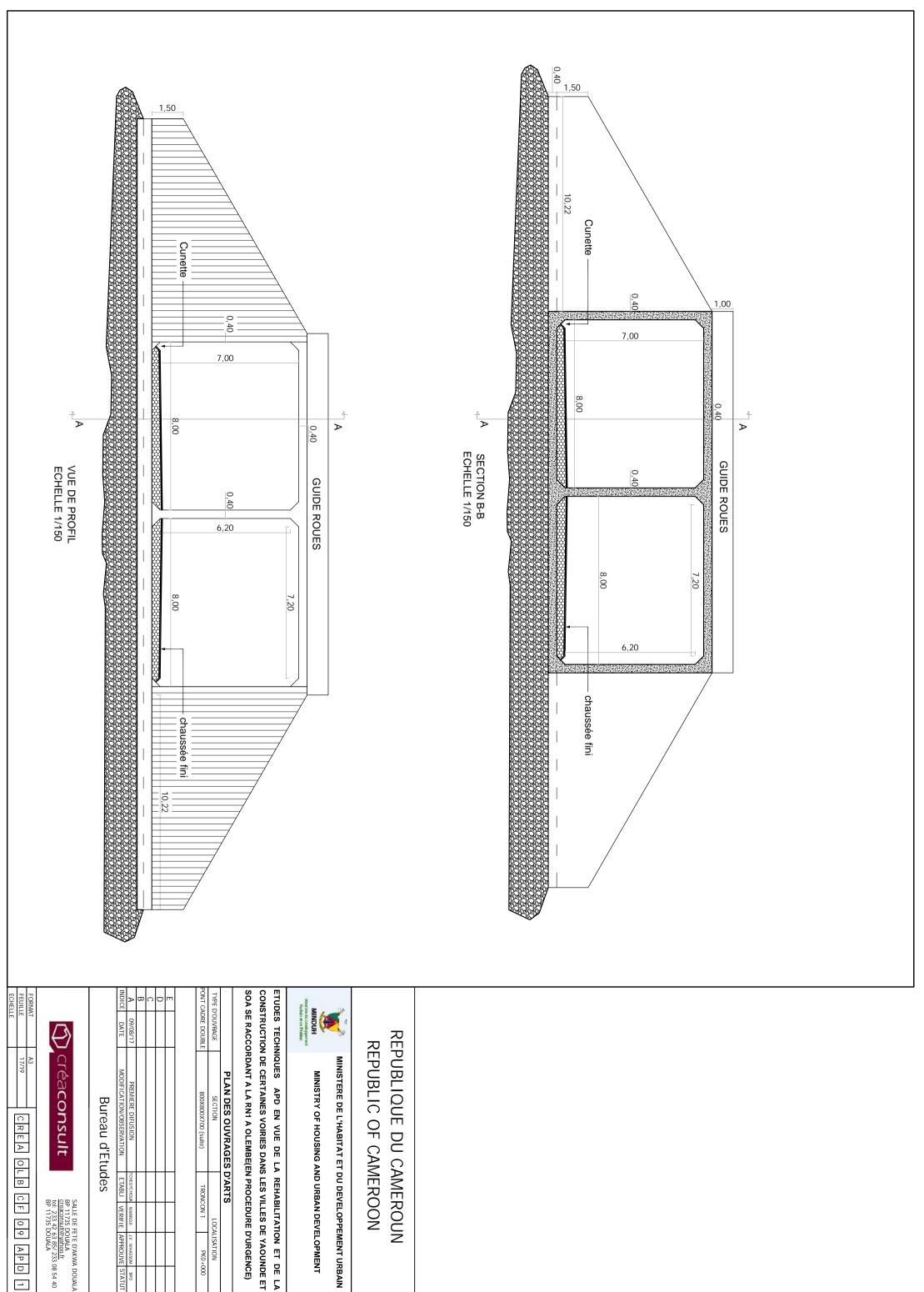
REPUBLIQUE DU CAMEROUN REPUBLIC OF CAMEROON

MINISTERE DE L'HABITAT ET DU DEVELOPPEMENT URBAIN

MINISTRY OF HOUSING AND URBAN DEVELOPMENT


ETUDES TECHNIQUES APD EN VUE DE LA REHABILITATION ET DE LA CONSTRUCTION DE CERTAINES VOIRIES DANS LES VILLES DE YAOUNDE ET SOA SE RACCORDANT A LA RN1 A OLEMBE(EN PROCEDURE D'URGENCE)

j j		PLAN DES OUVRAGES D'AKTS	Z		
TYPE D'	TYPE D'OUVRAGE	SECTION		LOCALISATION	[E
PONT CA	PONT CADRE DOUBLE	800X800X700	TRONCON 0	O NO:	
Ε					
D					
С					
В					
А	09/08/17	PREMIERE DIFUSION	TCHEUTCHOUA NWANDJI	NWANDJ	J.V. WHASSOM
INDICE	DATE	MODIFICATION/OBSERVATION	ETABLI VERIFIE APPROUVE STATUT	VERIF	Ξ

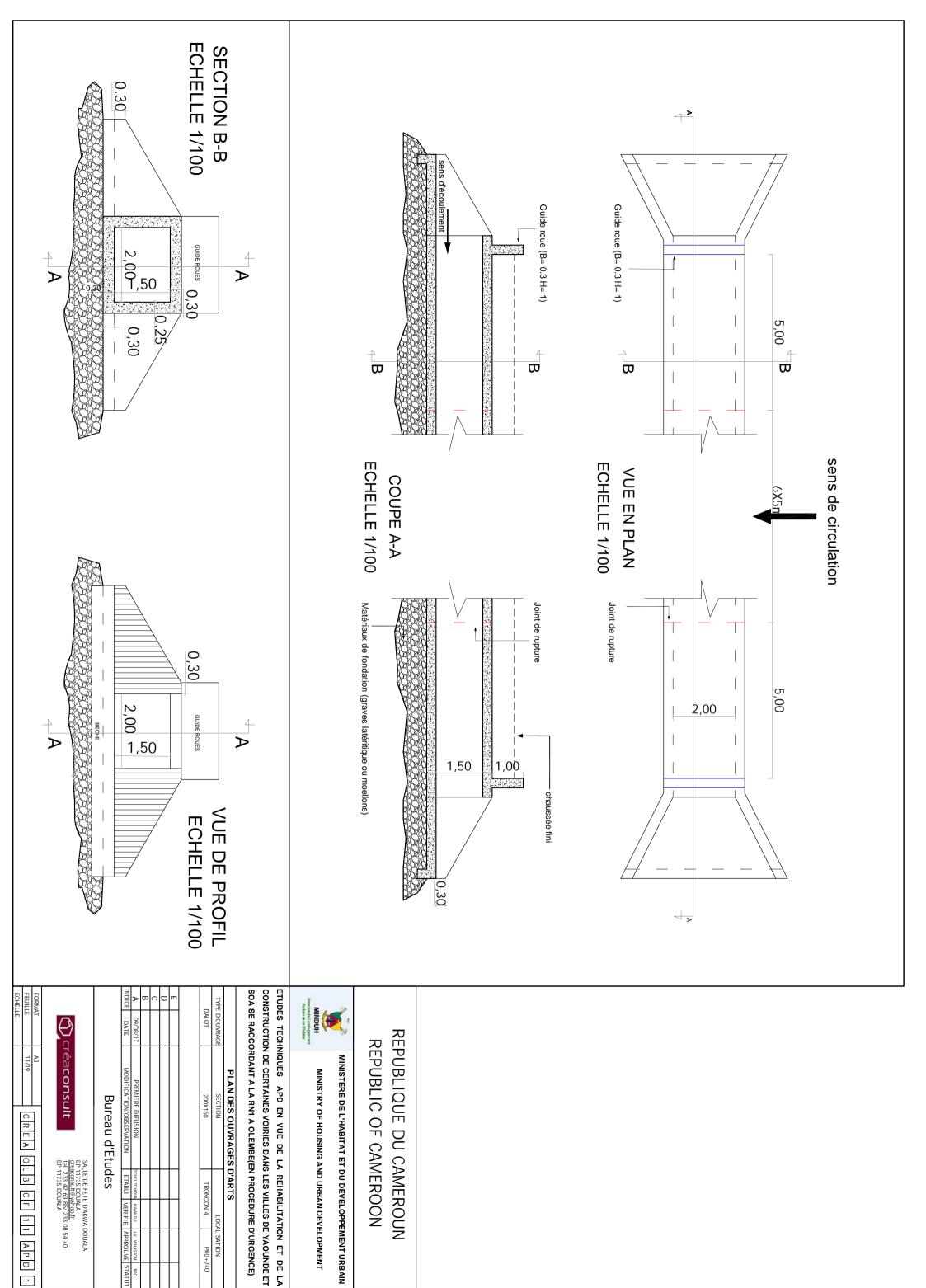

(C) créaconsult SALLE DE FETE D'AKWA DOUALA BP 11735 DOUALA CREACONSULTEVIATION IT Tel: 233 42 26 85/ 233 08 54 40 BP 11735 DOUALA

Bureau d'Etudes

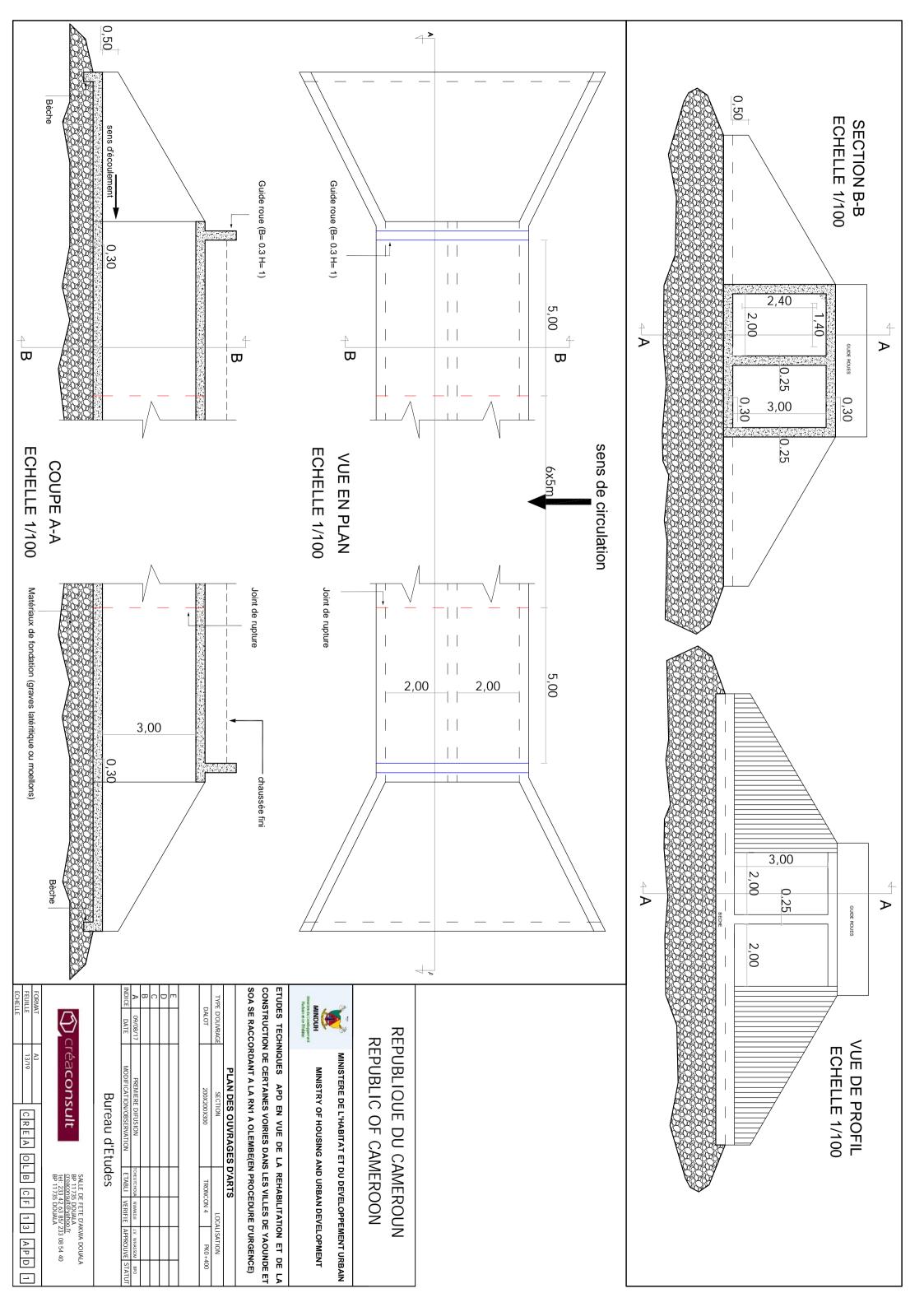
CREA OLB CF 09 APD 1

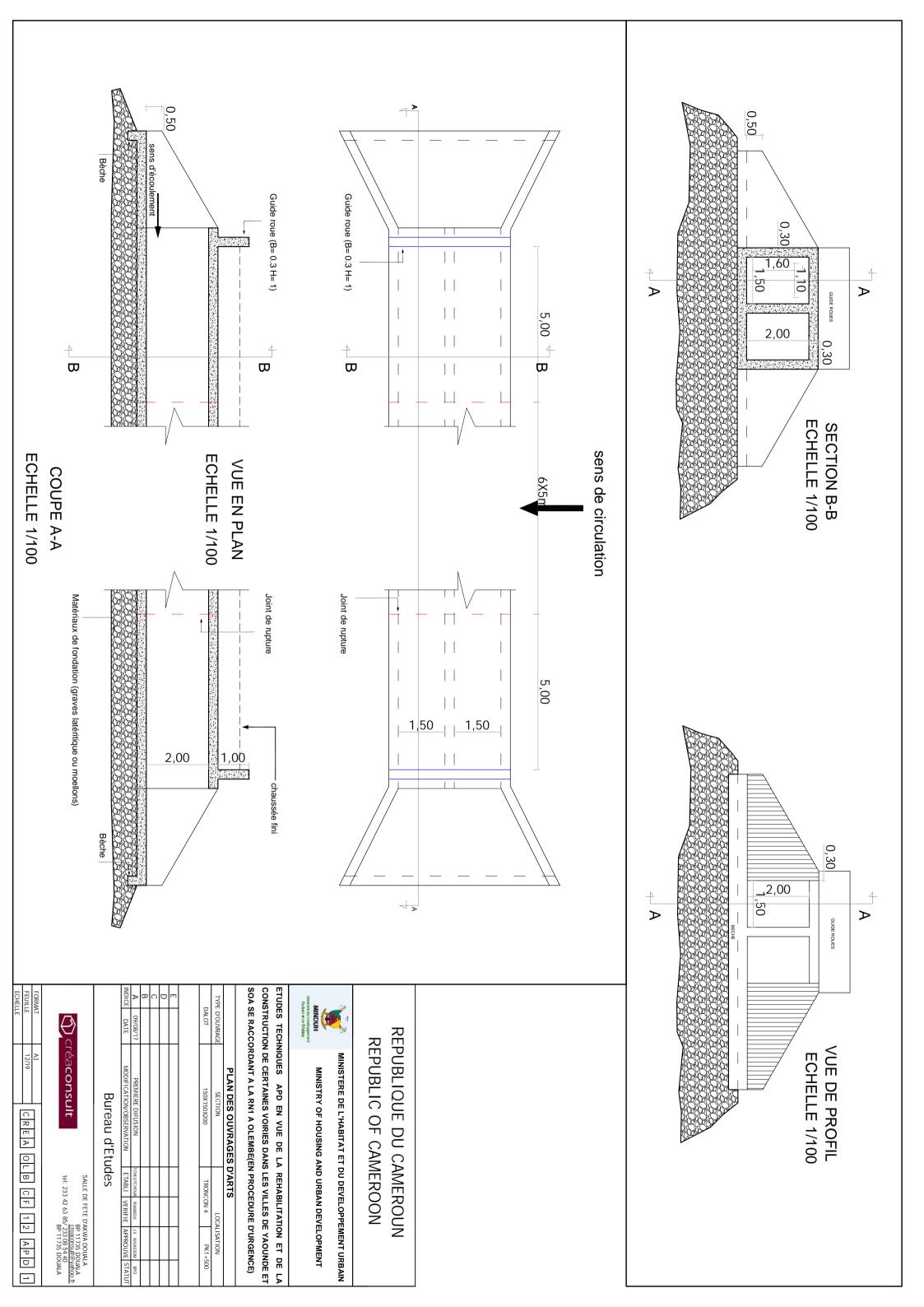
LOCALISATION

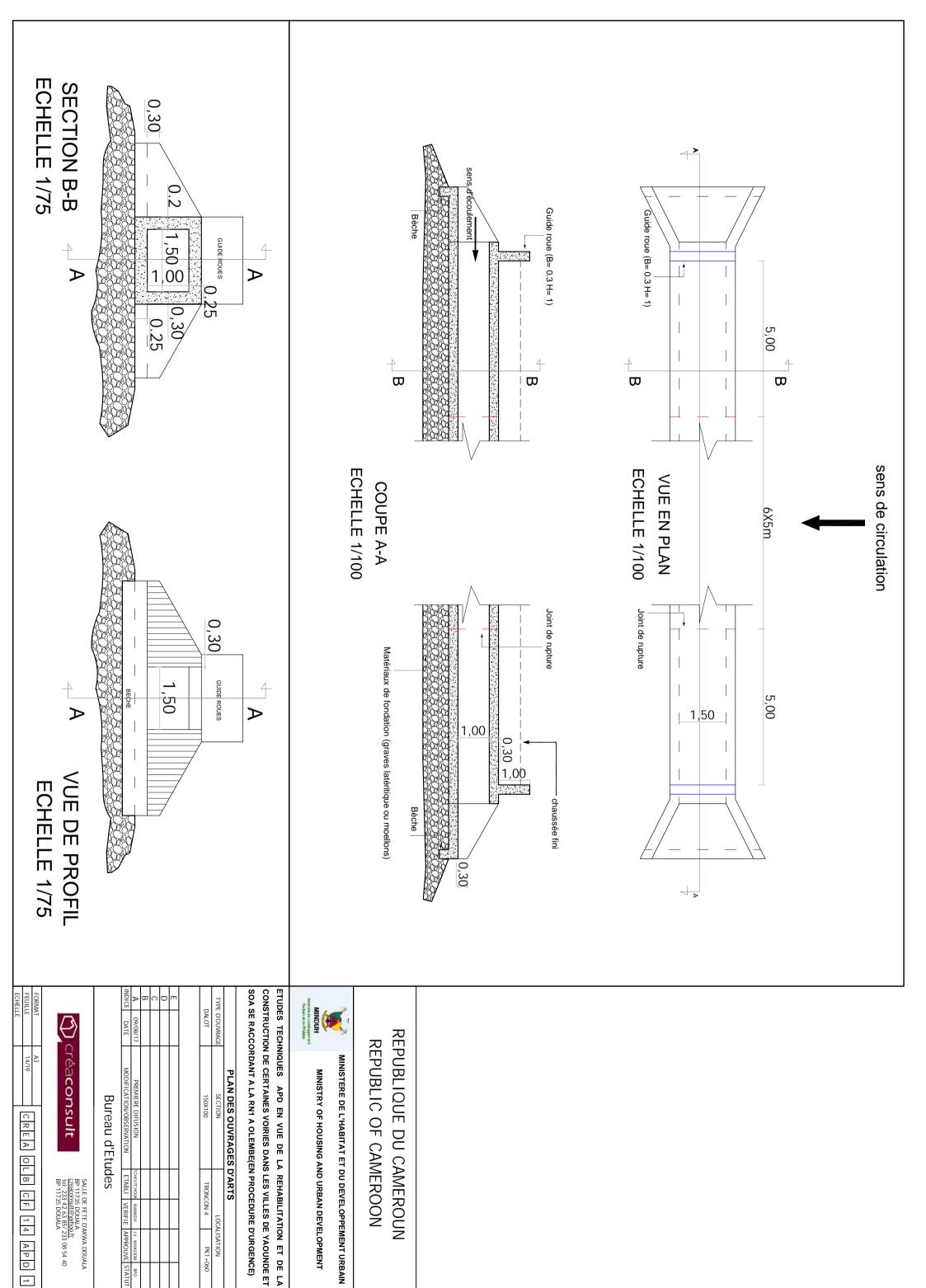
REPUBLIQUE DU CAMEROUN REPUBLIC OF CAMEROON

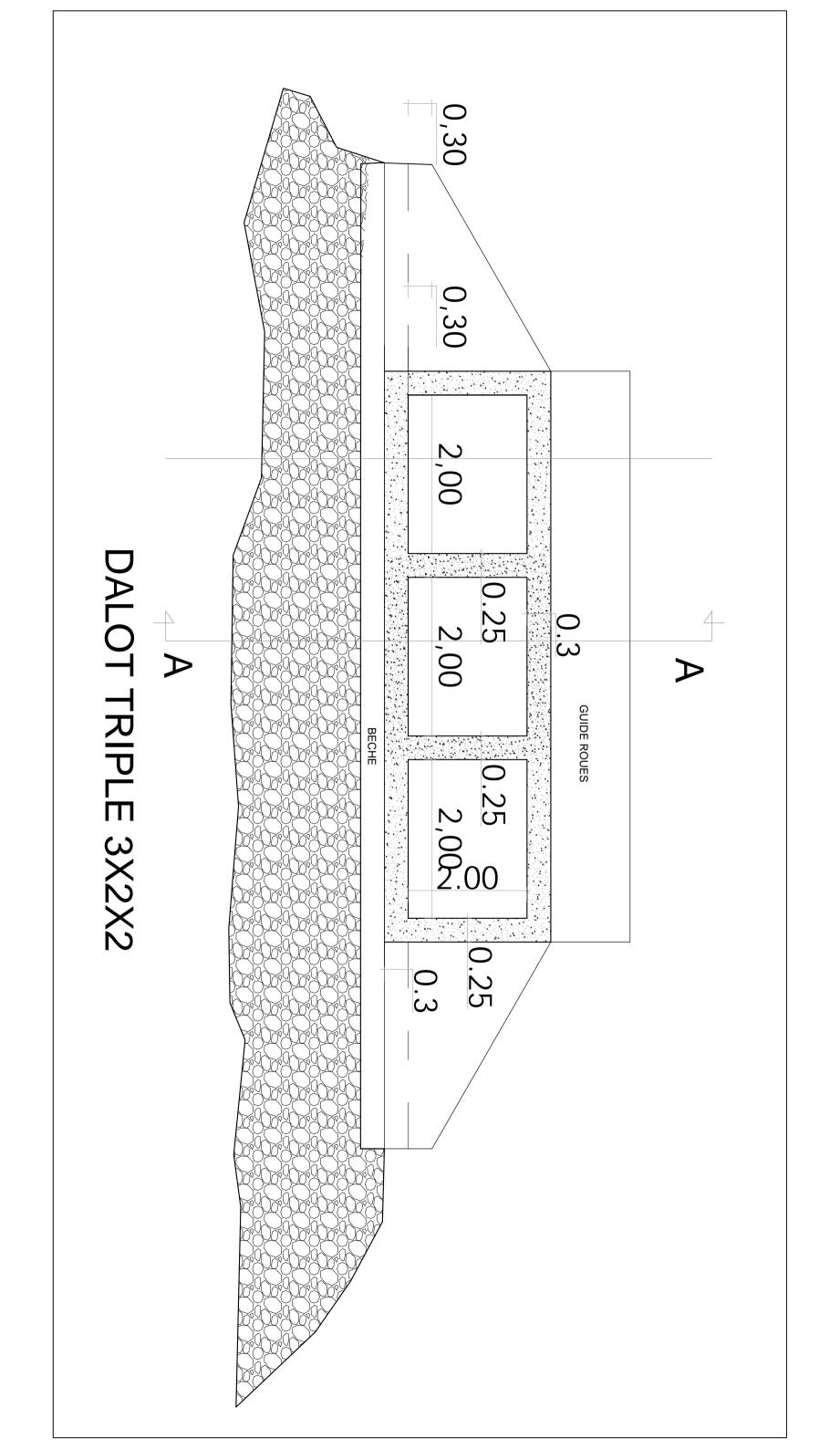

MINISTERE DE L'HABITAT ET DU DEVELOPPEMENT URBAIN

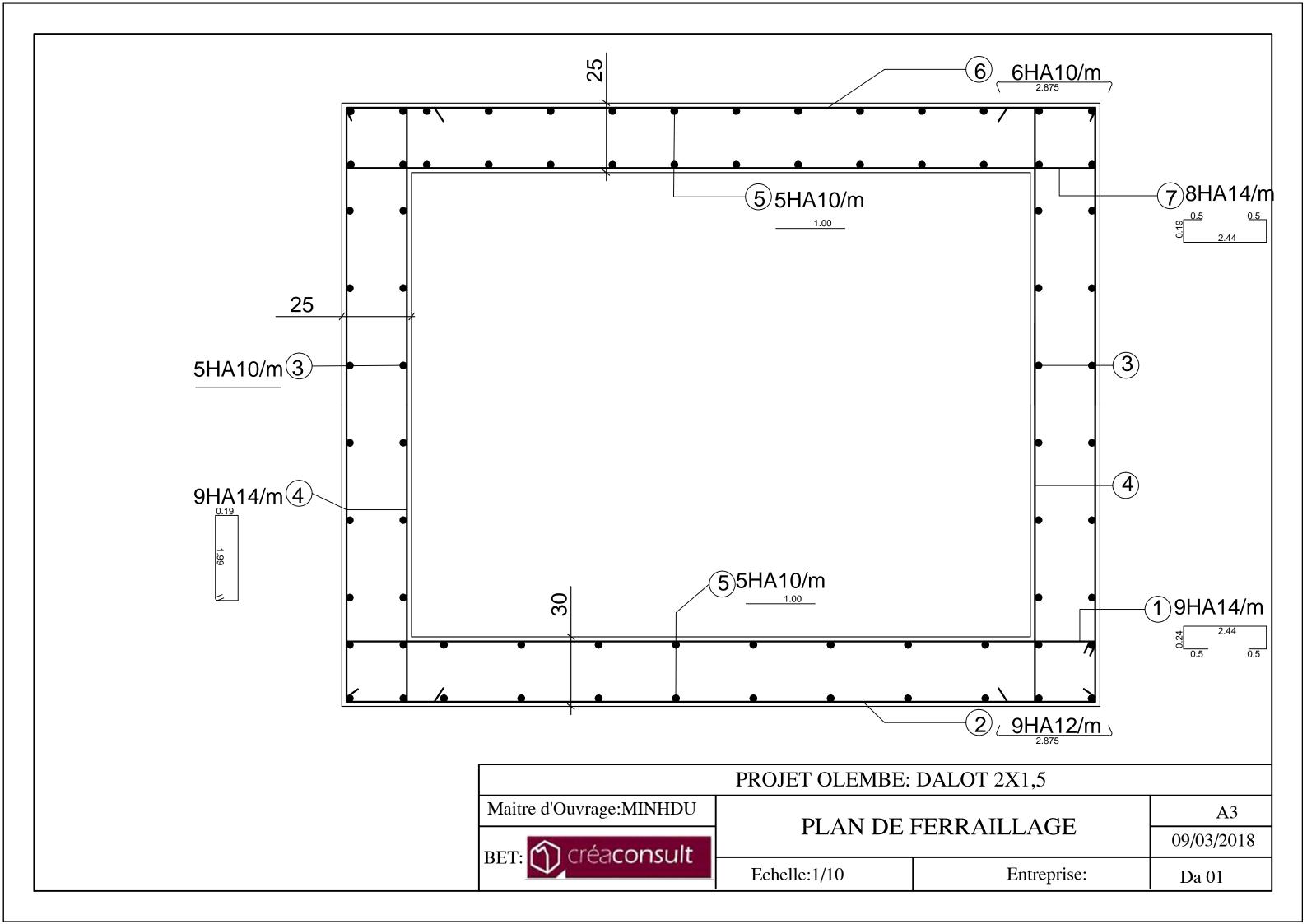
ETUDES TECHNIQUES APD EN VUE DE LA REHABILITATION ET DE LA

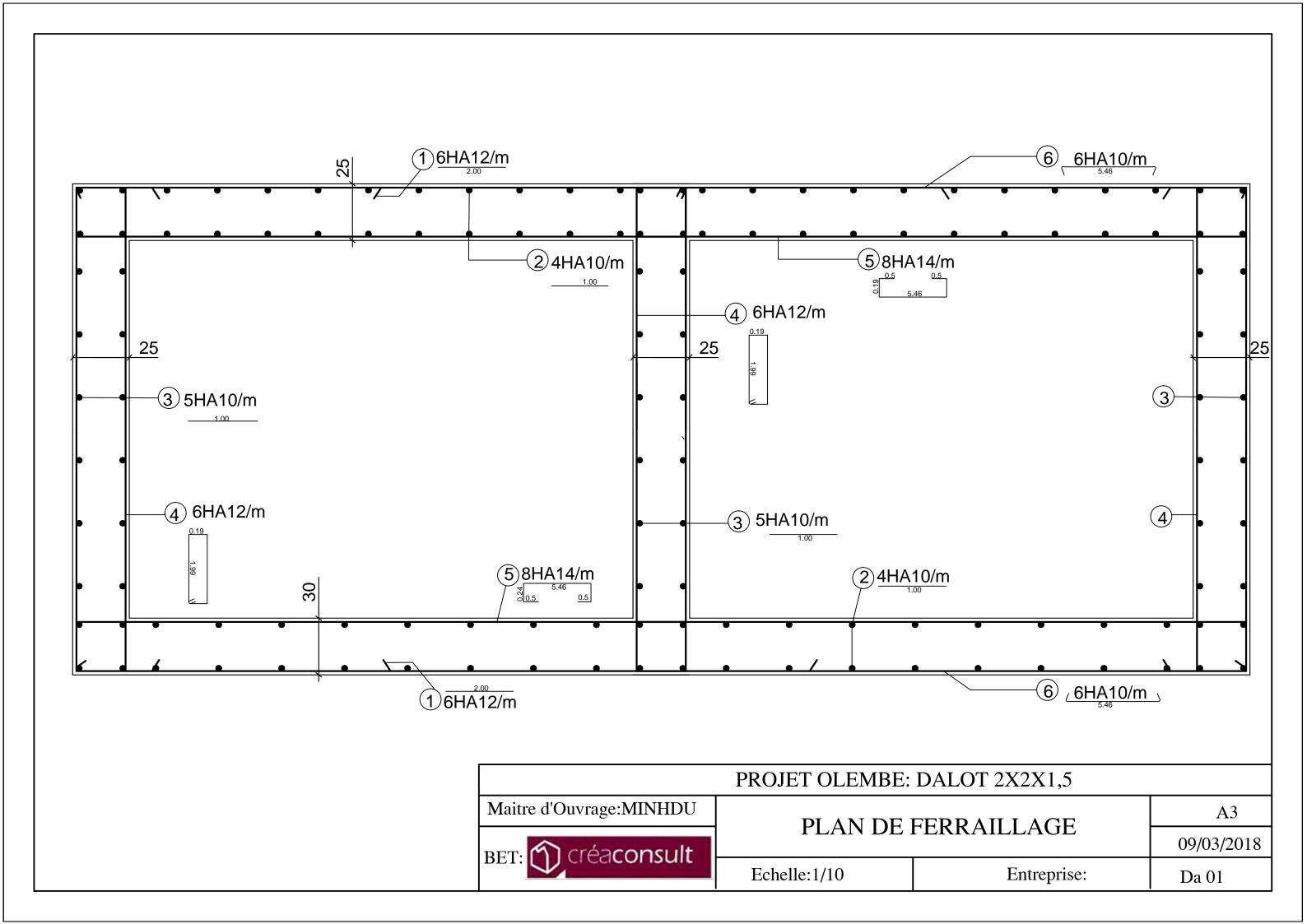

STRUCTION SE RACCO	STRUCTION DE CERTAINES VOIRIES DANS LES VILLES DE YAOUNDE ET SE RACCORDANT A LA RN1 A OLEMBE(EN PROCEDURE D'URGENCE)	N PROCEDURE I	E YAOUNDE ET D'URGENCE)
	PLAN DES OUVRAGES D'ARTS	D'ARTS	
D'OUVRAGE	SECTION	LOCA	LOCALISATION
ADRE DOUBLE	800X800X700 (suite)	TRONCON 1	PK0+000

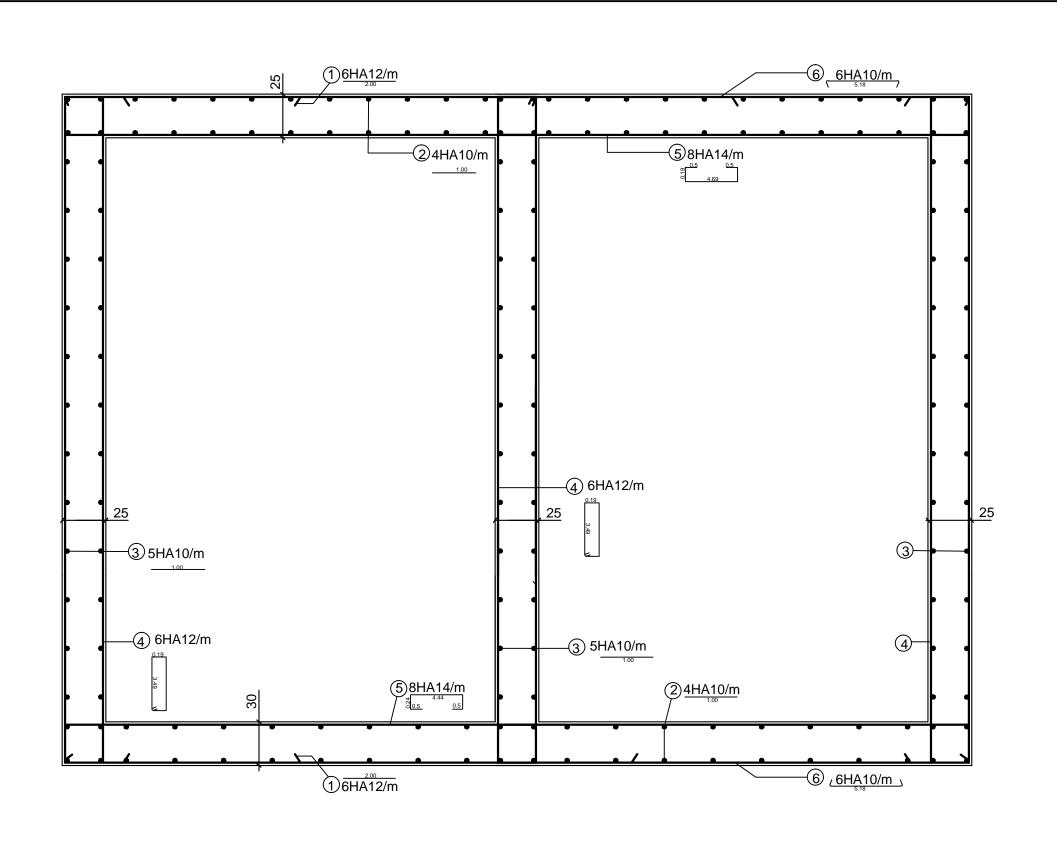

Δι	
0	
0	
Ξ	
۲	
Ξ	1
	aconsult


SALLE DE FETE D'AKWA DOUALA BP 11735 DOUALA Creaconsult@yahoo.fr tel: 233 42 63 85/ 233 08 54 40 BP 11735 DOUALA

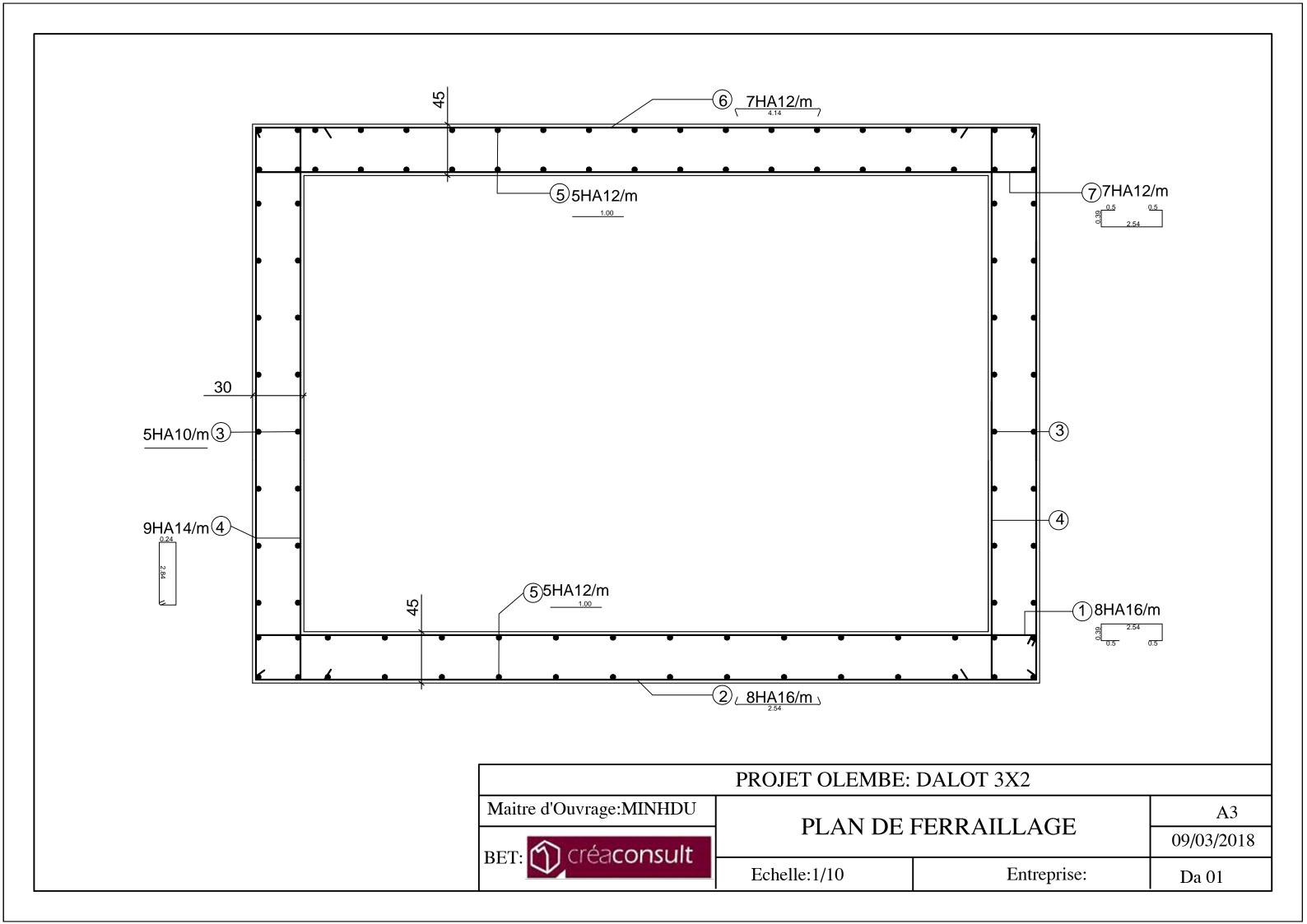

LOCALISATION

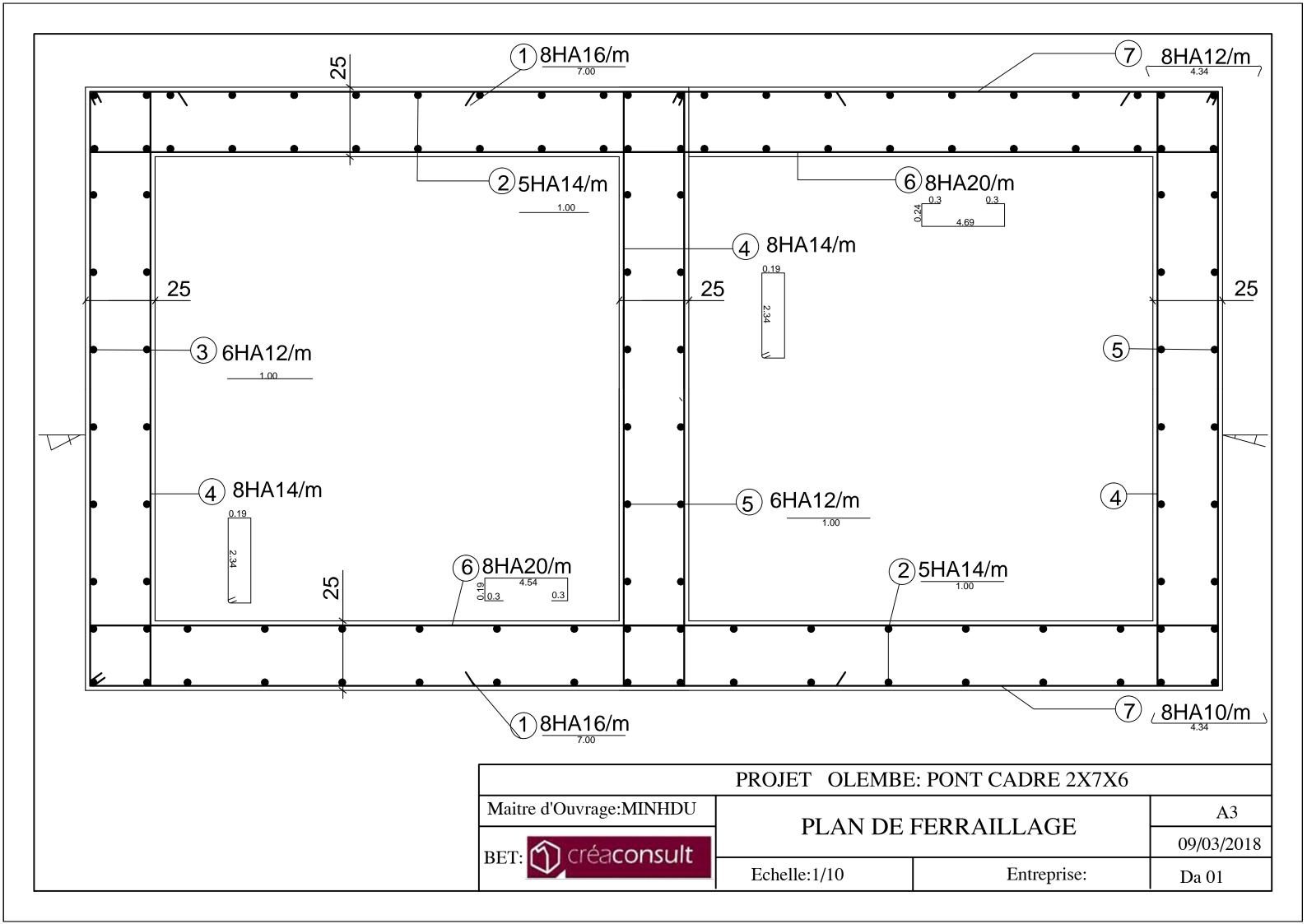


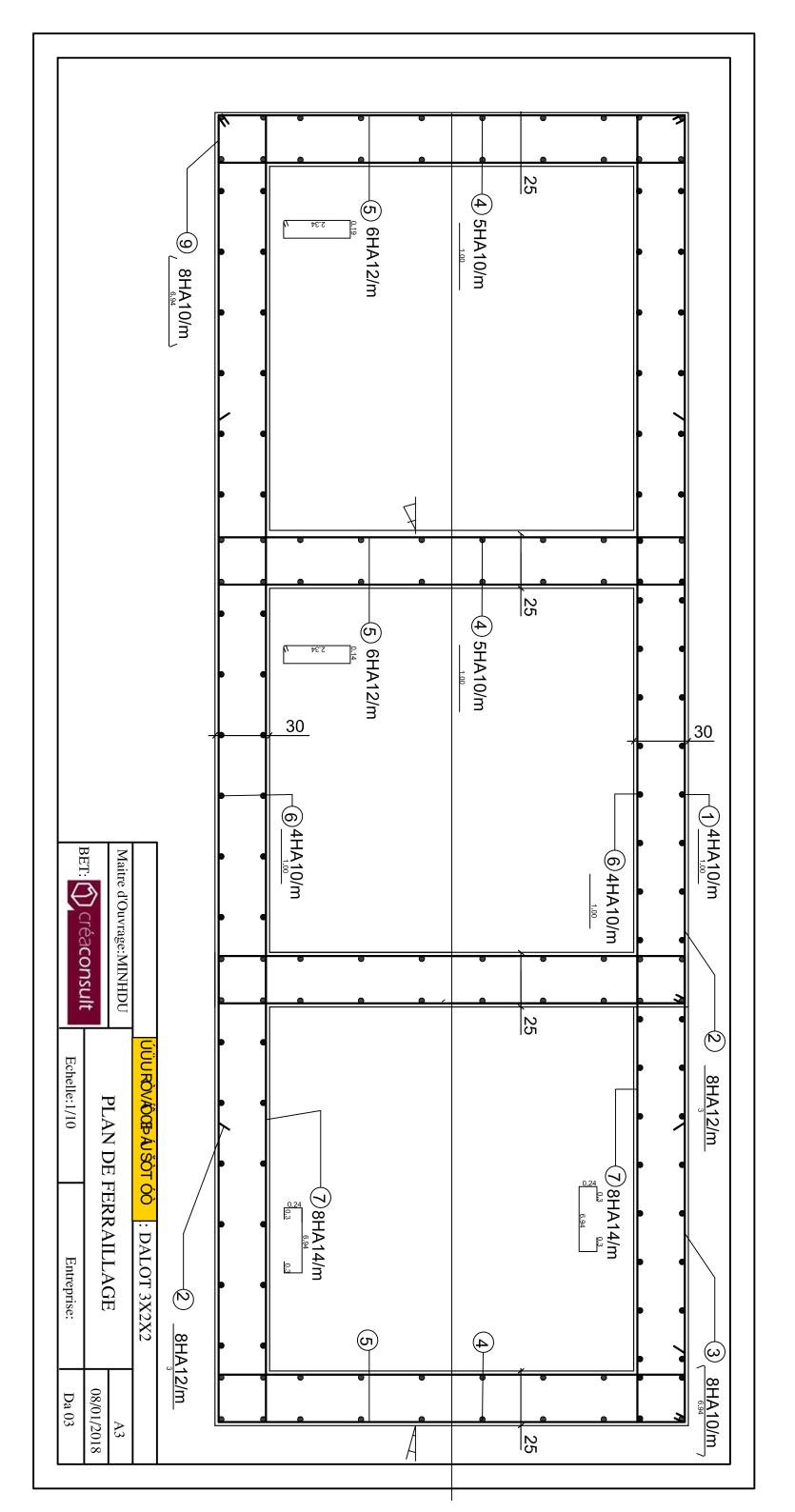


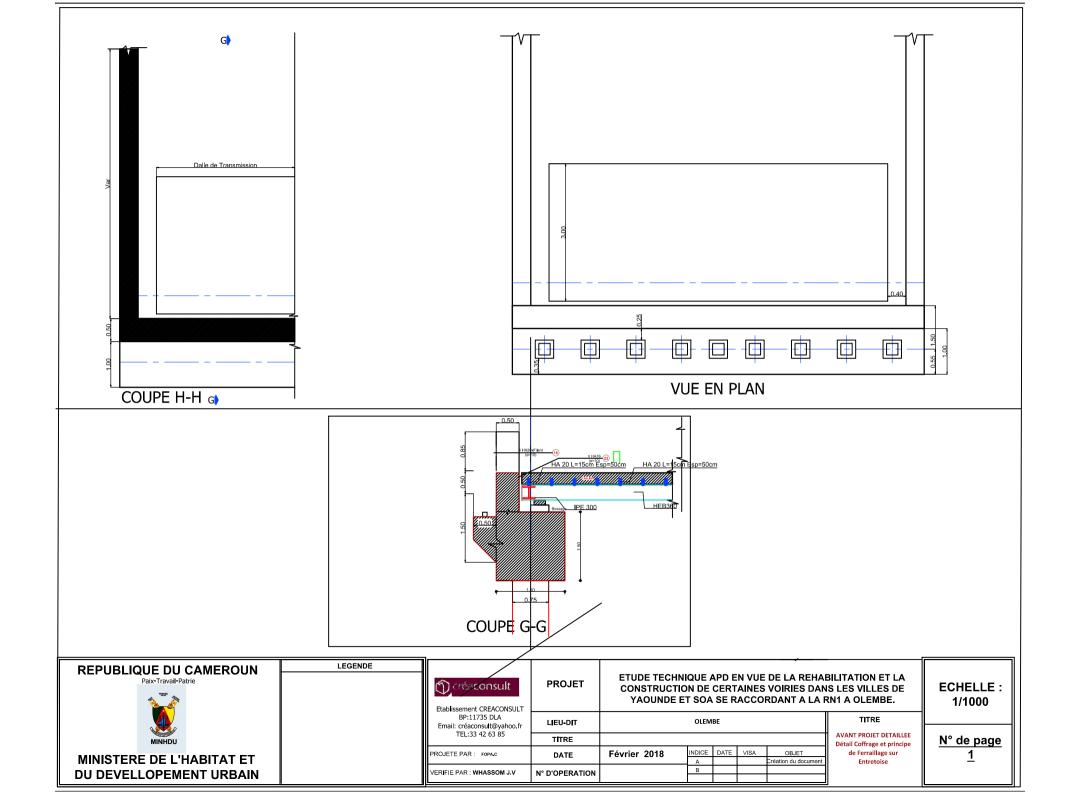


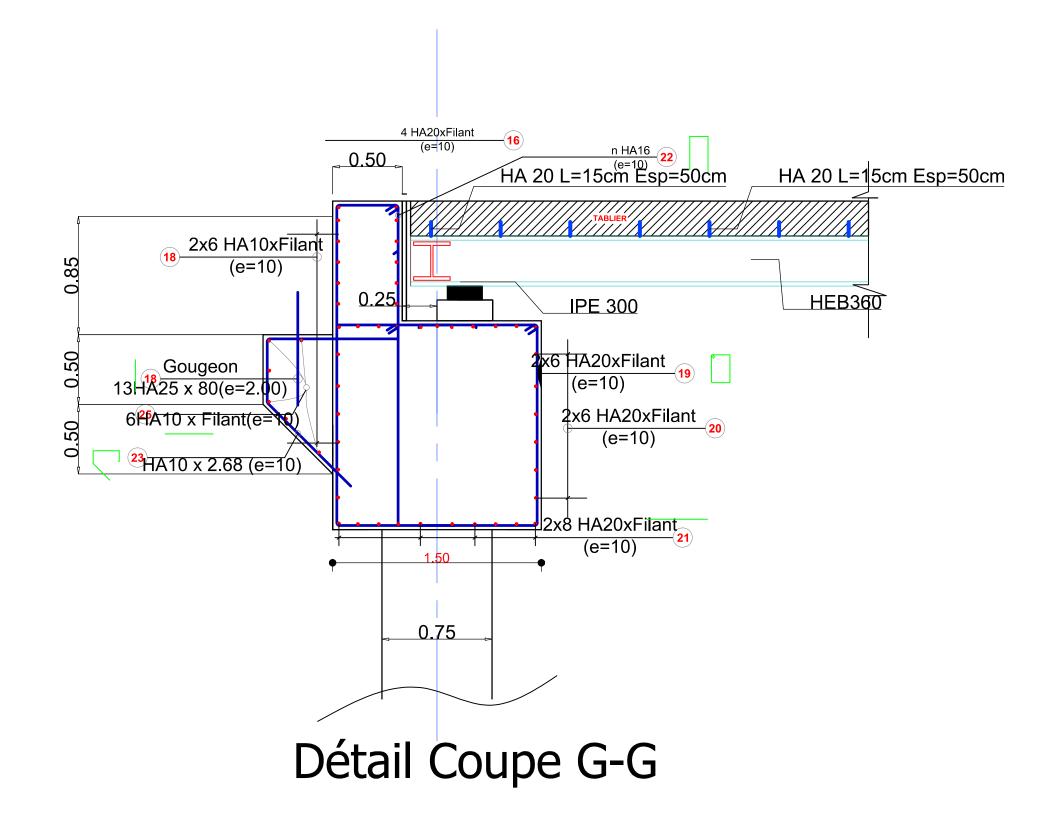
LOCALISATION

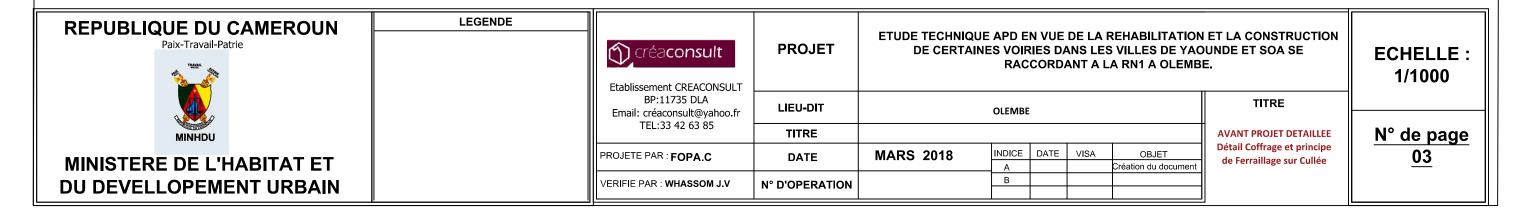


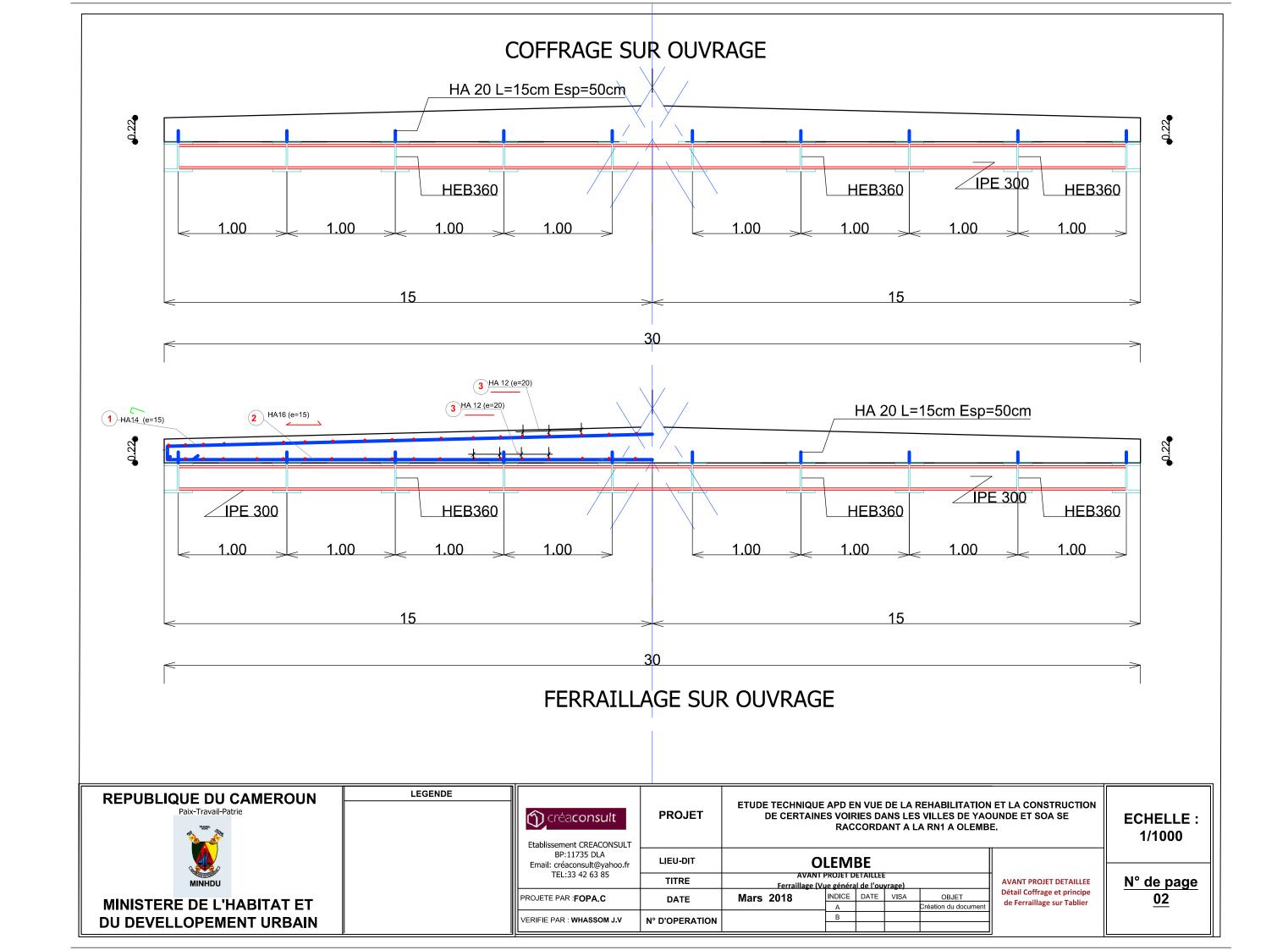




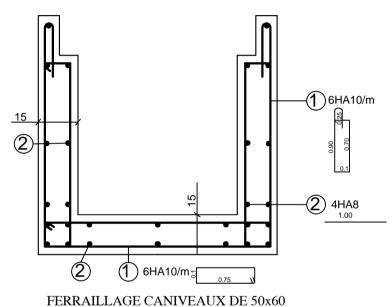


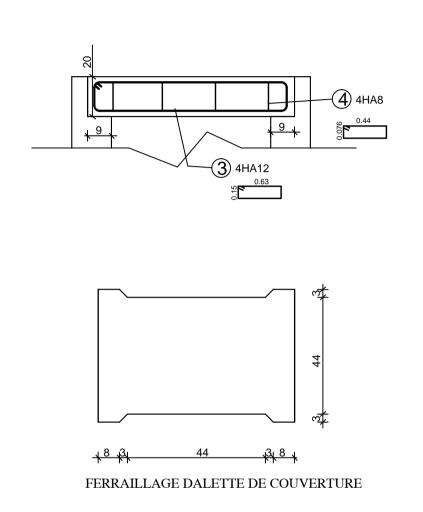

	PROJET OLEMBE: DALOT 2X2X3		
Maitre d'Ouvrage:MINHDU	DLANDE	EEDD AH I ACE	A3
вет: 🕥 créaconsult	PLAN DE FERRAILLAGE		09/03/2018
BEI. Credeorisait	Echelle:1/10	Entreprise:	Da 01









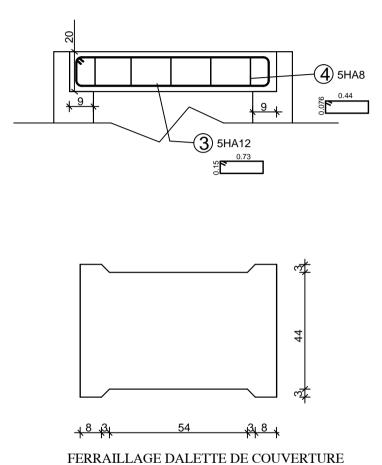

PROJET OLEMBE:CANIVEAU 50x50

Maitre d'Ouvrage:MINHDU
PLAN DE FERRAILLAGE

88/03/2018

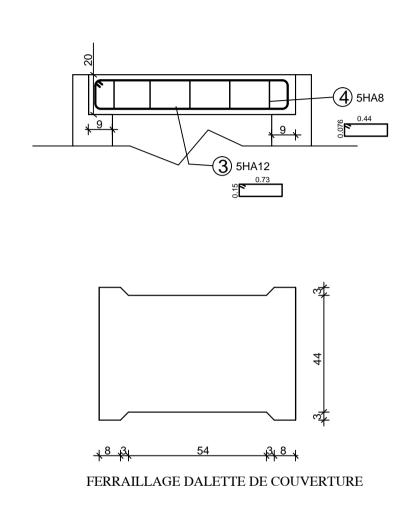
Echelle:1/10

Entreprise: Ca 02


PROJET OLEMBE:CANIVEAU 50x60

Maitre d'Ouvrage:MINHDU
PLAN DE FERRAILLAGE

88/03/2018


Echelle:1/10

Entreprise: Ca 02

FERRAILLAGE DALETTE DE COUVERTURE

PROJET OLEMBE :CANIVEAU 60x70			
Maitre d'Ouvrage:MINHDU	PLAN DE FERRAILLAGE		A3
вет: 🕥 créaconsult	PLAN DE FERRAILLAGE		08/03/2018
BEI. Credeorisait	Echelle:1/10	Entreprise:	Ca 02

20 2) 5HA12/m 2) 5HA8/m 1.00

FERRAILLAGE CANIVEAUX DE 60x80

	PROJET OLEMBE		
Maitre d'Ouvrage:MINHDU	PLAN DE FERRAILLAGE		A3
вет: 🕥 créaconsult	FLAN DE FERRAILLAGE		08/03/2018
BEI. Credeorisate	Echelle:1/10	Entreprise:	Ca 02